Сотворение и естественный отбор

Так получилось, что в течение длительного времени теорию эволюции нещадно критикуют с позиций так называемого «научного креационизма», который, по сути, является разновидностью современной протестантской апологии христианского учения.  Благодаря популяризации протестантская критика эволюции получила достаточно широкую известность, в результате чего именно «научный креационизм» стал рассматриваться как единственная альтернатива эволюционной теории. Отсюда возникло убеждение о полной несовместимости идеи естественного отбора с христианским учением, поскольку раз за разом протестантские апологеты пытаются убедить свою аудиторию в том, что компромисс здесь совершенно невозможен. В результате у многих из нас возникло убеждение, будто третьего не дано в принципе: кто не соглашается с Дарвином, тот, дескать, обязан верить в семь тысячелетий от сотворения мира или в то, что современное население Земли успешно «наплодилось» от трех сыновей праведного Ноя. Однако насколько обоснованно всю критику современного эволюционизма связывать с протестантской апологетикой?

Как известно, в рамках протестантской традиции широко распространена практика буквального толкования библейских текстов (в отличие от символического толкования, принятого в православии). Поэтому ссылка на Священное Писание как на источник точных знаний о мире и о человеческой истории считается у протестантов чем-то совершенно нормальным. Такое отношение к Библии, как мы понимаем, безоговорочно выводит «научный креационизм» за рамки современной науки, поскольку, в соответствии с установленными стандартами последней, апелляция к Божественному Откровению в научном познании исключена в принципе. По сути дела, протестантские креационисты возвращают нас к ситуации XVII века, во времена печально известного «дела Галилея». То есть, невозможно, настаивая на данной позиции, одновременно выставлять свое учение как «научное» (в современном значении этого слова). В противном случае нам придется пересмотреть стандарты самой науки.

Надо сказать, что противники креационизма выдвигают весьма справедливые упреки своим оппонентам, отстаивая автономность научного знания от религиозного догматизма. Речь идет не о том, что истины науки должны обязательно противоречить истинам веры (как иной раз полагают убежденные эволюционисты).

Речь идет о том, что истинность научного утверждения не может устанавливаться путем его соотнесения с библейским текстом. Как заявлял еще Галилей, Библия учит не тому, как устроено Небо, а как попасть на Небо.

Хотим мы того или нет, но по-другому наука состояться не может. Иными словами, совпадение научных утверждений с отдельными свидетельствами Священного Писания не должно быть предустановленным. В противном случае мы поставим под сомнение саму объективность ученых.

Кроме того, учтем и то обстоятельство, что ряд эмпирических данных, приводимых креационистами в пользу идеи Сотворения, получен объективно, независимо от апологетических целей. И это необходимо принять за норму.

Именно в силу сугубо идеологического противостояния достаточно продуктивная (с научной точки зрения) идея естественного отбора получила однобокую трактовку. С одной стороны, она стала использоваться дарвинистами исключительно для подтверждения идеи эволюционного развития. С другой стороны, она отбрасывалась креационистами в силу того, что стала прочно ассоциироваться с эволюционизмом.

Напомним, что в биологии борьба эволюционистов была направлена против линнеевского принципа неизменности видов. Как утверждал сам Линней (будучи убежденным креационистом), видов существует столько, сколько их было изначально сотворено Богом. То, что данное утверждение носит метафизический характер, спорить не приходится. Однако проблема в том, что если применять подобное суждение к эмпирической науке, то мы придем к серьезной логической ошибке. Дело в том, что научное понятие «вид» имеет достаточно условное значение. Параметры биологического вида как такового уточняются в науке до сих пор. Биологическая систематика  есть, прежде всего, порождение человеческого разума. Поэтому, если следовать линнеевскому суждению, Бог творил живые формы в точном соответствии с особенностями человеческого отображения реальности. Точнее, в соответствии с научной терминологией указанного периода. А это уже есть попытка придать абсолютное значение существующим понятиям и заслонить ими саму реальность. В этом, безусловно, чувствовался пережиток схоластического подхода.

Кроме того, сторонники Линнея рассуждали в духе механистического мировоззрения, где Бог уподоблялся часовщику, а природа мыслилась как бездушный, управляемый извне агрегат.  Современные протестантские креационисты, надо отметить, идут тем же путем, называя Бога не иначе, как Конструктором.

Поэтому стремление эволюционистов найти источники изменений в самой природе в какой-то степени было реакцией на указанную крайность. Проблема в том, что эта реакция привела к другой крайности. Сейчас это рассматривается как необходимое преодоление религиозного догматизма. Однако в действительности речь может идти о противодействии определенным метафизическим принципам, выросшим на почве особой трактовки христианского учения.

Если внимательно читать Библию, то даже при буквальном понимании священного текста не возникает никаких намеков на механицизм. Возьмем только первую главу «Бытия», которую сторонники креационизма приводят в качестве обоснования своей позиции. «И сказал Бог: да ПРОИЗРАСТИТ ЗЕМЛЯ (здесь и далее выделено мной – О.Н.) зелень, траву, сеющую семя по роду и подобию ее; и дерево плодовитое, приносящее по роду своему плод, в котором семя его на земле. И стало так. И ПРОИЗВЕЛА ЗЕМЛЯ зелень, траву, сеющую семя по роду и по подобию ее…» [Быт., 1, ст. 11-12]. Далее творение продолжается в том же духе: «И сказал Бог: да ПРОИЗВЕДЕТ ВОДА пресмыкающихся, душу живую; и птицы да полетят над землею, по тверди небесной. И стало так. И сотворил Бог рыб больших и всякую душу животных пресмыкающихся, которых ПРОИЗВЕЛА ВОДА по роду их, и всякую птицу пернатую по роду ее. И сказал Бог: да ПРОИЗВЕДЕТ ЗЕМЛЯ душу живую по роду ее. Скотов и гадов, и зверей земных по роду их» [Быт., 1, ст. 20, 21, 24].

Из указанных строк следует, что в библейском контексте природа не выглядит бездушным, инертным агрегатом. Это расходится с общепринятой точкой зрения, будто христианское вероучение полностью лишило природу духовного начала, сосредоточив внимание на трансцендентном Боге-творце. Можно привести строки из Нового завета, подтверждающие, что создатели христианского Священного Писания воспринимали природу как живое начало. Так, в Откровении читаем: «И пустил змей из пасти своей вслед жены воду как реку, дабы увлечь ее рекою. Но ЗЕМЛЯ ПОМОГЛА ЖЕНЕ, и разверзла земля уста свои и поглотила реку, которую пустил дракон из пасти своей» [Откр., 12, ст. 15-16].

Как мы видим, даже используя буквалистский подход при трактовке вышеприведенных фрагментов Священного Писания, мы не получим той метафизической модели, согласно которой абсолютно трансцендентный Бог-творец противостоит абсолютно бездушной природе, лишенной всякого внутреннего источника движения. Строки первой главы Бытия недвусмысленно подчеркивают наличие ТВОРЧЕСКОГО НАЧАЛА в самой природе, способной порождать живые существа в согласии с Божественным замыслом.

Таким образом, борьба с идеей неизменности видов, выдвинутой Линнеем, была, по существу, направлена не столько против «христианских пережитков» в естествознании, сколько против применения жестких механистических подходов к описанию живой природы. Однако вопрос вышел за рамки собственно научной проблематики, перейдя в мировоззренческую плоскость.

В результате произошло так, что дарвинская идея естественного отбора ассоциируется исключительно с поступательным эволюционным развитием от простого к сложному. И это несмотря на то, что в его теории связь прогрессивных эволюционных процессов с естественным отбором весьма условна и выдвигается исключительно благодаря произвольным экстраполяциям. Сам процесс видообразования, затронутый Дарвином, не имеет прямого отношения к ароморфозам (то есть прогрессивному усложнению организации) и в этом смысле не противоречит идее Сотворения. Еще раз подчеркнем, что понятие биологического вида относится к научному способу ОПИСАНИЯ реальности, а потому утверждать, вслед за Линнеем, о том, что имело место сотворение именно «видов», некорректно.

Именно поэтому современные креационисты все чаще стали использовать понятие ОСНОВНОГО ТИПА. В биологической систематике это понятие пока еще не прижилось. С точки зрения креационистов, «основной тип» соответствует библейскому «роду», в соответствии с которым («по роду их») происходило творение живых существ. Это есть некое отображение исходного божественного замысла. В пределах основного типа вполне возможны трансформации, исключающие, правда, ароморфозы. Привлекательность этой идеи в том, что она очень хорошо уживается с дарвинской теорией естественного отбора. В самом деле, видовое многообразие можно достаточно убедительно объяснить приспособлением живых существ к конкретным условиям среды в ходе борьбы за выживание. Однако только в том случае, если исключить идею прогрессивных изменений.

К сожалению, «научные креационисты», категорически отвергающие эволюцию, избегают  любой апелляции к учению Дарвина, поскольку последний является знаменем их идеологических противников. Надо полагать, что именно поэтому креационизм до сих пор остается на обочине естествознания, оставаясь на правах маргинального и даже одиозного учения. Причина заключается как раз в излишне демонстративном внимании к идеологии, нежели к собственно научным проблемам. Мировоззрение в данном случае гораздо уместнее и логичнее передать в ведение религии – без всяких ссылок на «научность».

Олег Носков

«Мы приглашаем вас на…»

Летом 1958 года к списку научных институтов Академгородка добавился еще один: Институт катализа СО РАН. И за прошедшие десятилетия смог стать одним из признанных во всем мире лидеров в изучении каталитических процессов.

Юбилейная программа длилась три дня и включала массу событий разного формата. Началось все научной сессией «Современные тенденции в химии и катализе». Открывая сессию, председатель СО РАН академик Валентин Пармон (возглавлявший Институт катализа ИК СО РАН в 1995-2014 годах) подчеркнул: «По нашей традиции, всегда, когда мы празднуем очередной юбилей института, мы проводим научные конференции». По словам академика Пармона, большое количество иногородних и иностранных участников таких конференций подтверждает, что Институт катализа заметен не только в нашей стране».

Не стала исключением и эта научная сессия. Ее программа включала пять пленарных докладов, два из которых были прочитаны почетными профессорами ИК СО РАН. Этого звания удостаивают зарубежных ученых, которые ведут активное научное сотрудничество с институтом. Профессор Клод Миродатос (Лион, Франция) выступил с сообщением «Современные тенденций в гетерогенном катализе: от случайного к управляемому». А его коллега, профессор Жильбер Фроман (Гент, Бельгия), прочел лекцию «Кинетическое моделирование процессов переработки углеводородов».

Были среди докладчиков и «условные иностранцы», для которых связь с ИК СО РАН является еще более тесной. Автор доклада «Электрохимия и устойчивое развитие» Елена Савинова в настоящее время профессор университета Страсбурга. Но еще не так давно она была сотрудницей института-«юбиляра».

Главным событием второго дня стало торжественное собрание в Большом зале Дома ученых СО РАН. Как и положено на таких мероприятиях, на нем вручали награды ученым, подводили итоги работы института и много говорили о том, что еще только предстоит. Нынешний директор ИК СО РАН академик Валерий Бухтияров обозначил главные ориентиры для развития института: преобразование его в федеральный исследовательский центр (что означает более тесное слияние со своим бывшим омским филиалом, ныне – Институтом проблем переработки углеводородов) и активное участие в программе «Академгородок 2.0». Что касается второго, то большие надежды руководство ИК СО РАН связывает с возможностями будущего источника синхротронного излучения СКИФ.

«Вишенкой на торте» юбилейной программы, по словам Валерия Бухтиярова, стал третий день, когда всех сотрудников пригласили на праздничную программу во дворе института. Предлагаем вашему вниманию наш кроткий фоторепортаж с места событий. Все фото - кликабельны.

Двор института был заполнен гостями Двор института был заполнен гостями.

 

 

 

 

 

 

Но самое интересное происходило на сцене. С нее звучали искренние и неформальные слова поздравлений... Но самое интересное происходило на сцене. С нее звучали искренние и неформальные слова поздравлений...

 

 

 

 

 

 

сменявшиеся выступлениями творческих коллективов... Они сменялись выступлениями творческих коллективов,

 

 

 

 

 

 

вручением наград победителям спортивных соревнований...  вручением наград победителям спортивных соревнований...

 

 

 

 

 

 

и весьма символичных подарков. и весьма символичных подарков.

 

 

 

 

 

 

А зрители охотно подпевали артистам А зрители охотно подпевали артистам

 

 

 

 

 

 

и награждали всех выступающих и награждаемых дружными аплодисментами. и одаряли всех выступающих и награждаемых дружными аплодисментами.

 

 

 

 

 

 

Наталья Тимакова

От теплоэнергетики к космосу и климату

Одним из лауреатов Международной премии «Глобальная энергия» в этом году стал академик РАН, экс-директор Института теплофизики РАН Сергей Алексеенко (опередивший десяток других финалистов, в том числе Илона Маска). Ученый рассказал корреспонденту «Чердака» о том, как получать энергию из земли, какое физическое явление привело к аварии на Саяно-Шушенской ГЭС и как теплофизика связана с астрономией и космической погодой.

— Сергей Владимирович, вы стали лауреатом премии «Глобальная энергия». Поздравляю!

— Спасибо! Это было неожиданным, несмотря на то, что я, по-моему, в пятый раз попадаю в шорт-лист. Мне даже уже показалось, что мое время прошло. Я считаю, что это очень престижная премия, я очень высоко это ценю.

— Эту премию вам вручили по сумме заслуг?

— Я представляю академическую науку. В отличие от крупных компаний, которые доводят разработки до коммерческого продукта, мы занимаемся фундаментальными основами технологий. Я действительно получаю награду по совокупности работ. Мы работаем, фактически, по всем направлениям энергетических технологий. Это и теплоэнергетика на органическом топливе, и возобновляемые источники энергии, причем почти все виды — солнце, ветер, геотермальное тепло, горючие отходы, ГЭС, накопители энергии и энергосбережение. Почему так много направлений? Дело в том, что главная фундаментальная дисциплина, которая обеспечивает энергетику необходимыми исследованиями — это теплофизика, которую я и представляю.

Сергей Алексеенко — И как вы оцениваете перспективы развития энергетики, какие виды важно развивать?

— Если говорить о перспективах развития энергетики, то можно говорить о ближайшей перспективе в несколько десятков лет; и дальней — это около полсотни лет и более.

Ближайшая перспектива — это, несомненно, повышение эффективности использования органического топлива. Это понятно, ведь Россия занимает ведущее место по добыче и потреблению органического топлива, нужны новые более энергоэффективные, экологичные и безопасные технологии, например, водоугольное топливо или глубокая переработка угля, прежде всего газификация.

Более дальняя перспектива — это конечно же возобновляемые источники энергии. Но заниматься ими надо уже сегодня, иначе, мы отстанем навсегда. Здесь я вижу такие важные направления как солнечная энергетика и, для многих это звучит удивительно, геотермальная энергетика, которая основывается на тепле горячих подземных вод. Но прогнозируется постепенный переход на петротермальную энергетику. Она использует тепло сухих пород на глубинах от 3 до 10 км. Там температура достигает 350 градусов Цельсия и, по оценкам, это неисчерпаемый источник тепла. По крайне мере, его хватит на все время существования человечества с учетом конечного времени жизни развитых цивилизаций. Еще один важный компонент, который надо развивать, и мы этим тоже занимаемся, — это хранение энергии, потому что все возобновляемые источники, кроме геотермальных, временного действия. По всем этим направлениями мы работаем, у нас уже есть немало существенных достижений.

— Расскажите поподробнее, что за петротермальная энергетика: как получать такую энергию, насколько это развито?

— Петротермальная энергетика для меня сейчас самая интересная тема, она весьма наукоемкая. В остальных областях традиционной энергетики имеют место больше инженерные вопросы.

Если вернуться к истории, Россия была первой в разработке идей петроэнергетики: еще Циолковский предложил добывать петротермальное тепло в 1897 году. Он даже нарисовал схемы. Надо, чтобы были проницаемые породы.

Бурятся две скважины глубиной примерно четыре километра. По одной подается холодная вода, а по второй скважине извлекается нагретая вода, с температурой в 120 градусов, которую можно использовать или для отопления, или генерировать электричество.

Позже академик Владимир Обручев предложил уже конкретные технологические схемы. Впервые такая схема была реализована в Париже в 1963 году. Там оказались естественные проницаемые породы. В результате удалось добывать 450 МВт тепловой мощности, которой достаточно для отопления более 150 тысяч квартир.

А на самом деле днем рождения петроэнергетики можно считать 1970-й год, когда в Лос-Аламосской национальной лаборатории предложили способ создания искусственной проницаемости путем гидроразрыва за счет высокого давления. Проблема в том, что можно пробурить скважину и натолкнуться на базальтовые породы, в которых путем гидроразрыва могла образоваться всего лишь одна или несколько трещин с зазором в миллиметр. Много воды так не прокачаешь. Уже позднее придумали улучшенную геотермальную систему (enhanced geothermal system), для формирования которой используются разные методы стимулирования естественных дефектов пород, чтобы получить микрополости: вибрацией, термическими способами. Потом туда добавляют пропант, расклинивающий агент, типа песчинок, которые фиксируют эти дефекты. И получается проницаемый резервуар.

На сегодня создано около 20 таких улучшенных геотермальных систем. Больше всего в Америке — 5 опытных установок. Еще этим занимаются Австралия Франция, Англия и Япония. Техническая возможность получения петротермальной энергии доказана. Максимальная глубина — 5,1 км. В США уже есть первая коммерческая станция — всего 1,3 МВт, но она отдает энергию в систему.

Конечно, США повезло: весь Дикий Запад — это горячие породы. Но они и пошли правильным путем, я предлагаю нам по такому же пути идти.

За счет средств департамента энергетики был выполнен интеграционный проект. Для этого были приглашены около двух десятков лучших специалистов по геотермальной энергетике со всего мира. Они за полтора года провели полный анализ состояния геотермальных ресурсов США. Было установлено, что разведанных, технически доступных запасов геотермальной энергии в США хватит на 50 тысяч лет при том же самом энергопотреблении.

Официальный план департамента энергетики США — к 2030 году добиться себестоимости 6 центов за киловатт-час, а к 2050 году по плану установленная мощность генерации электроэнергии за счет петротермальных источников составит 100 ГВт, или 10% всей мощности Америки. Это очень много. Если сравнить с Россией, то это эквивалентно 40%. Представьте, что почти половина электрической мощности дает глубинное тепло. И это уже не фантастика, это реальные технологии.

— А сколько стоит сделать такую петротермальную станцию в России?

Если говорить о строительстве петротермальных станций в России, то, по нашим оценкам, можно начать с 25 МВт — это обеспечит энергией нормальный поселок, даже район города. Мы предлагаем сделать опытную станцию и отработать основные варианты.

В целом особенности петротермальной энергетики таковы. Пробурить 10 км — это примерно 2 миллиарда рублей. Чтобы извлечь тепло, нужны две скважины: по одной подается холодная вода, по другой, если есть проницаемые породы, выходит горячий пар. Но для этого надо попасть в резервуар с проницаемыми породами. Если вы промахнетесь, то 4 миллиарда на ветер. Поэтому это наукоемкая задача: необходимо развивать геофизические методы диагностики и разведки, разрабатывать новые, дешевые способы бурения. Cейчас до 60% капзатрат на петротермальную установку — это бурение. Другая принципиальная задача связана с созданием проницаемых резервуаров. Иногда они бывают естественные, но обычно нет.

— В России такие резервуары есть?

— По России данных почти нет, только по Северному Кавказу. Там действительно есть проницаемые породы на глубинах около двух километров типа трещиноватых известняков. Я только что разговаривал с профессором Алхасовым, директором единственного института в России геотермального профиля — Института проблем геотермии РАН. Совершенно разумно создание полигона в Дагестане по геотермии. Это их предложение. Я согласен. Небольшой полигон у них уже есть

Часто задачу развития петротермальной энергетики сравнивают по масштабу с освоением термояда.

Но у термояда больше концептуальные, физические проблемы. А здесь в преобладают проблемы прикладного научного и инженерного характера. Для практических целей первоочередной задачей следует считать развитие гидрогеотермальной энергетики, то есть использование горячей геотермальной воды. Но она не настолько горячая, чтобы использовать обычные тепловые станции. При 90 градусах она даже кипеть не будет. Как из такой воды получить электричество? Способ есть — бинарные циклы. По первому контуру циркулирует геотермальная вода, а по второму — низкокипящий теплоноситель, например, фреоны или изопентан, изобутан, которые и приводят в действие турбину. Их температура кипения варьируется в широком диапазоне. Но здесь свои проблемы, не до конца решенные. Так, требуется специальная турбина для каждого теплоносителя. А всего насчитывается несколько сотен потенциальных рабочих тел для бинарных циклов. Правильный выбор будет зависеть от температуры и множества условий.

Я хочу напомнить, что Институт теплофизики СО РАН первым в мире в 1970-м году запустил такой бинарный цикл на Камчатке — Паратунская ГеоЭС. Электроэнергия производилась на оригинальной фреоновой турбине мощностью 815 кВт при температуре геотермальной воды всего лишь 80 градусов. Но потом эту станцию закрыли. Во всем мире сейчас эксплуатируется около двух тысяч бинарных установок. Все ссылаются на опыт Института теплофизики, а в России нет ни одного такого цикла. Я считаю, что это недопустимая ситуация. Поэтому одной из главных целей сегодня следует считать разработку бинарных установок. Чрезвычайно важно отметить, что бинарные циклы играют ключевую роль и в энергосбережении. Из 2000 действующих в мире бинарных установок около половины применяются для решения задач энергосбережения. Имеется в виду, что генерация электричества осуществляется не только от горячей геотермальной воды, но и от сбросного тепла предприятий и жилого сектора. А если сбросное тепло низкопотенциальное, то есть температура ниже, скажем, 50 градусов Цельсия, то целесообразно использовать тепловой насос, чтобы повысить температуру до уровня 100 градусов и пустить сбросную воду на теплоснабжение. Здесь кроется громадный потенциал энергосбережения. А Институт теплофизики сегодня — единственный разработчик тепловых насосов в России. Отметим, что даже если вода имеет всего 7 градусов (естественные водоемы или неглубокие скважины), из нее «забирают» два градуса, и получают тепло с большим экономическим эффектом, чем при сжигании топлива.

— А кроме Камчатки и Кавказа у нас еще есть где-то гидрогеотермальные ресурсы? Кроме того, на Камчатке мы можем получить много энергии. А там есть, куда ее потратить? Ее же придется транспортировать.

— У нас есть два вида геотермальной энергии — во-первых, это приповерхностное тепло горячей воды. Таких запасов мало и вода не очень горячая, чаще всего меньше 100 градусов. Поэтому требуются особые технологии. Во-вторых, есть глубинное тепло, про которое я уже говорил, — это температуры до 350 градусов.

Гидротермальных источников у нас немного — это Камчатка, там очень горячая вода, и Кавказ. Есть в районе Байкала. Есть не сильно горячая, но почти на всей территории Западной Сибири. Скажем, в Новосибирской области температура подземных вод достигает 39 градусов. Если поставить тепловой насос, можно поднять температуру до уровня теплофикации. В Томской области вода с температурой до 85 градусов, ее уже можно использовать для генерации электроэнергии. Наша установка на Камчатке работала от 80 градусов. Понятно, что термодинамический КПД низкий — 8-10% в сравнении с 35−40% в теплоэнергетике, но это бесплатный источник энергии.

Камчатка, Мутновская геотермальная станция Конечно возникает вопрос, нужно ли на Камчатке столько энергии. Там запасов тепла больше, чем нужно для их потребления, поэтому излишки извлекаемой энергии нужно транспортировать. Это проблема, которую надо решать.

А если говорить о петротермальной энергетике, то бурить можно в любом месте. Понятно, что где-то тепло теплые породы и вода залегают близко к поверхности, как в Исландии (сверхкритическая вода с высокими параметрами уже на уровне до 5 км), а где-то очень глубоко. Если будет дешевым бурение, то можно реально бурить везде и добывать геотермальную энергию даже в Арктике.

— Вы упомянули, что в ближайшей перспективе надо повысить эффективность использования органического топлива. Как это сделать?

— Чтобы повысить энергоэффективность, требуется существенно улучшать знания о процессах горения топлива и генерации пара, а также об аэродинамических процессах в котельных агрегатах. Например, в атомных электростанциях главная проблема безопасности заключается в появлении так называемых сухих пятен, когда в парогенерирующем канале осушается пленка жидкости. В местах образования сухих пятен резко ухудшается теплоотдача и происходит перегрев, который приводит к аварийной ситуации. То же самое происходит, когда у вас из кастрюли «убегает» молоко — пустая кастрюля расплавится. Поэтому формирование сухих пятен в пленках жидкости — принципиально важный вопрос. Эта одна из главных задач, над которыми я работаю. Процессами тепломассопереноса в волновых пленках жидкости я занимался со студенчества. На пленке жидкости всегда есть волны. Это хорошо видно, когда она стекает по стеклу. Там формируются впечатляющие волновые картины. Мы впервые в полной мере вскрыли механизмы нелинейных волновых явлений, которые оказывают определяющее влияние на теплообмен и образование сухих пятен.

Водная стена Кроме того, в парогенерирующем канале, когда движется и жидкость, и пар, наблюдается другое важное явление — срыв капель. А он может привести к осушению канала, так и к эрозии лопаток турбин или коррозии металла в оборудовании в соответствующих трактах электрической станции. Все эти процессы совершенно недопустимы в промышленных условиях. Мы смогли впервые описать ряд подобных явлений теоретически и экспериментально, используя новые экспериментальные методы, разработанные в Институте теплофизики, в частности, полевые измерители скорости. Это пример того, как фундаментальное исследование, которое само по себе очень важно, потому что мы выявляем природу фундаментальных процессов и явлений, находит прямое приложение к энергетике.

— А свои технологии вы разрабатываете?

— Множество, целый ряд инновационных работ. Например, для малой энергетики предложена и доведена до промышленной стадии оригинальная технология приготовления и сжигания водоугольного топлива. То есть, сжигается не просто уголь, а вместе с водой. Это вязкая суспензия, там 65% угля, остальное — вода с небольшой добавкой пластификатора с целью снижения вязкости и скорости оседания твердых частиц. Суспензия может храниться без расслоения в течение месяца. Основная идея была не перевозить уголь по железной дороге, а гнать по трубе на станцию. Смесь должна была насосами гнаться на станцию и сразу же подаваться в горелку. Процесс непрерывный, уголь перегружать не нужно.

И первый трубопровод в России даже был построен. Он соединил Белово (Новосибирская область) и Новосибирск, длина 262 км. И ТЭЦ-5 в Новосибирске специально была спроектирована под водоугольное топливо. Но наступила перестройка, не хватило средств для доработки технологии. Сейчас там уже нет трубопровода, трубы выкопали.

Но там поработали китайцы, они учли этот опыт и запустили у себя, адаптировав стандартные котлы. Сейчас они изготавливают 15 млн тонн водоугольного топлива в год.

Мы недавно доработали эту технологию и довели до коммерческого образца. Один котел небольшой, на 1 МВт в Кемерово сделали за счет личных средств. Он прекрасно работает в экспериментальном режиме на отходах углеобогощения. А отходы углеобогащения, которых скопилось гигантское количество, — это глобальная проблема для угольной промышленности во всем мире — что делать с такими отходами. Зато эти отходы прекрасно сжигаются с использованием разработанных нами оригинальных горелок: там используется эффект Коанда, кумулятивный эффект и формирование тороидальных вихрей. Форсунка не имеет износа, поскольку поток разделен на две части. Водоугольная смесь движется с пренебрежимо малой скоростью по центральной части, а по кольцевому каналу подается воздух со скоростью более 300 м/с. Смешение абразивной смеси с высокоскоростным потоком воздуха происходит вне горелки, поэтому в такой конфигурации нечему истираться.

Второй котел уже на 10 МВт сделали на озере Ханка на Дальнем Востоке при поддержке бизнеса. Он полностью спроектирован как базовый котел для малой энергетики. В ближайшее время ожидаются пуско-наладочные работы и тестовые испытания, после чего будут даны рекомендации по серийному выпуску.

Новосибирская ТЭЦ-5 сейчасВыгоды применения водоугольного топлива вместо исходного угля, в первую очередь, связаны с экологией. Но главное — возможность сжигать отходы углеобогащения и низкокачественные угли.

Есть еще глобальное будущее преимущество. Известно, что основная идея, как в будущем использовать уголь, заключается в глубокой переработке угля, прежде всего газификации, то есть неполном сжигании с получением горючего синтез-газа. Но поскольку газификация происходит при наличии воды, то здесь мы набираем опыт работы с водоугольной смесью. При переходе на другой режим горения можно организовать и процесс газификации.

— А если вернуться к перспективам развития энергетики. Вы сказали про хранение энергии. В этой области вы ведете работу?

— Да. Наш новый топливный элемент на алюминии — самый яркий пример. Это совместный проект с Объединенным Институтом Высоких Температур РАН. Известный академик М.Е. Шейндлин был руководителем проекта по алюминию. А мы нашли там свою нишу. Мы решили заняться воздушными алюминиевыми топливными элементами и разработали портативный источник энергии. Даже целую линейку в диапазоне от 10 до 200 Вт. Окислитель — воздух, а источник энергии — алюминий. Алюминий окисляется, происходит электрохимическая реакция. И одновременно алюминий является анодом. То есть нужен еще только катод. А его мы изготовили из углеродных нанотрубок, которые также производятся в Институте теплофизики. Вот и весь топливный элемент.

— Сколько он служит, сколько у него циклов?

— Проблема в том, что алюминий окисляется, получается осадок из гидроокиси алюминия. Поэтому только десятки часов. Но зато кусок алюминия взяли, вставили в корпус топливного элемента, и где угодно он будет работать, даже в условиях Арктики.

— А еще чем над чем вы в последнее время работаете?

— Еще крайне интересное направление, которым мы в последнее время занимаемся — это вихревые технологии в энергетике. Вихри — это естественное состояние движения любой сплошной среды. Мы исследуем концентрированные вихри типа вихревой нити или торнадо. Мы первыми описали ряд фундаментальных вихревых явлений, например, спиральная форму вихря, двойную спираль — две переплетенные спиральные вихревые нити, распад вихря в закрученном пламени. Многие вихревые явления играют ключевую роль при разработке перспективных энергетических технологий. Так, в топочных камерах часто используют самые современные и эффективные горелки вихревого типа. За счет закрутки происходит распад вихря — внезапное раскрытие воздушно-топливной струи, сопровождающееся возвратным движением горячих газов к корню факела. Именно таким способом осуществляется устойчивое воспламенение топлива с хорошим перемешиванием и турбулизацией, чем и обеспечивается эффективное сжигание топлива. Принципиально важно, что таким образом можно сжигать обедненные топливные смеси с очень низким выбросом окислов азота.

Новое явление, которое мы недавно обнаружили — хотя оно было известно для других случаев, — так называемое перезамыкание вихрей. Если два витка спирального вихря близко подойдут к друг другу, то они соединятся, и от протяженного вихря оторвется вихревое кольцо, а вихревая нить останется непрерывной. Такое необычное явление. Мы его обнаружили при моделировании вихревого жгута в отсосной трубе за гидротурбиной. Данное явление очень важно, так как при вращении спирального вихря возникают мощные вибрации, которые стали одной из причин аварии на Саяно-Шушенской ГЭС. Другой эффект, обусловленный отрывом вихревого кольца, проявляется в том, что кольцо летит с большой скоростью и ударяется о стенку. Таким образом мы объяснили, почему в отсосных камерах слышен глухой стук.

Момент отрыва вихревого кольца при перезамыкании Но есть и далеко идущие последствия. Например, объяснение и описание механизмов генерации турбулентности. Так, в микромире есть понятие квантовой турбулентности. В ней участвуют квантовые вихри, их поперечный размер — один атом. Только благодаря процессам перезамыкания существует квантовая турбулентность. На квантовом уровне невозможно в деталях исследовать эти явления. Но, поскольку уравнения вихревого движения примерно одни и те же, исследования в крупномасштабной экспериментальной установке можно использовать для объяснения и интерпретации процессов в микромире.

То же самое наблюдается на макромасштабах. Давно поставлен вопрос, почему Вселенная однородна на больших масштабах. Одно из объяснений — на самой ранней стадии эволюции Вселенной (эра инфляции или квантовой турбулентности), она представляла собой клубок из вихревых нитей (трубок). И только благодаря перезамыканию происходил неограниченный рост степеней свободы, сопровождающийся равномерным перераспределением вещества во Вселенной. Вещество образовывалось на поверхности этих вихревых трубок. И до сих пор есть свидетельства, что такие трубки были: наблюдаются космические струи длиной в сотни световых лет — последствия ранней жизни Вселенной.

И, наконец, самое интересное явление, к которому я клоню, и которое имеет отношение и к энергетике, и к климату — это активность Солнца. Мое мнение, как и мнение многих других специалистов, что не только углекислый газ влияет на климат, а на самом деле Солнце. И прежде всего его активность, которая проявляется во вспышках. Солнечные вспышки являются следствием перезамыкания магнитных трубок совершенно аналогично случаю вихревых трубок. А поскольку мы сейчас можем исследовать и предсказывать поведение вихревых и магнитных трубок, то предлагается на уровне комплексной программы заниматься исследованиями процессов на Солнце, их моделированием и изучением влияния этих процессов на атмосферу Земли. Таким образом, есть надежда предсказывать еще и климатические изменения, и частично реабилитировать энергетику, которая считается главным виновником глобального потепления из-за выбросов парниковых газов.

— А с кем вы сотрудничает в изучении вспышек на Солнце?

— Мы сотрудничаем и с красноярским учеными, которые представляют известную научную школу по магнитной гидродинамике, и, конечно, Институтом солнечно-земной физики СО РАН в Иркутске. У меня был аспирант, который занимается процессами на Солнце. Он на количественном уровне описал аномальное поведение температуры в солнечной атмосфере, которое заключается в следующем. Температура на поверхности Солнца — шесть тысяч градусов, а в верхних слоях атмосферы — два миллиона. В чем причина? Ведь чем дальше от солнца, тем больше должно остывать вещество. А все объясняется акустикой. За счет неустойчивости тех самых магнитных трубок, которые всегда формируются в недрах Солнца, генерируются акустические возмущения. Их нелинейная эволюция в атмосфере сопровождается диссипацией, а любая диссипация приводит к повышению температуры.

А если мы можем описывать возмущения магнитной трубки, то можем и предсказать их поведение вплоть до возникновения петель и перезамыкания. То есть мы можем свой вклад внести, исследуя и эти процессы. От теплоэнергетики к космосу и климату.

Алиса Веселкова

Академику Алексеенко присуждена премия «Глобальная энергия»

Заведующий лабораторией систем тепломассопереноса Института теплофизики им. С.С. Кутателадзе СО РАН и его директор с 1997 по 2017 годы академик Сергей Владимирович Алексеенко стал лауреатом премии «Глобальная энергия».

Высокая награда присуждена сибирскому ученому за подготовку теплофизических основ создания современных энергетических и энергосберегающих технологий и их применение при модернизации электростанций, мусороперерабатывающих предприятий, а также за разработку концепции охлаждения различных систем, от мощных вычислительных до атомных электростанций.

Если говорить о прикладных областях, то научный поиск академика Алексеенко направлен на задачи, связанные с разработкой экологически безопасных тепловых электростанций (моделирование процессов горения газа, угля и жидкого топлива), созданием новых типов горелок, а также методов термической переработки твердых бытовых отходов с целью получения тепловой энергии, моделированием процессов сжижения природного газа, формированием теплогидравлических стандартов безопасности атомных электростанций и  и так далее. Кроме того, Сергей Алексеенко — инициатор и идеолог развития петротермальной энергетики в России.

Надо отметить, что ранее лауреатами премии «Глобальная энергия» стали председатель СО РАН академик Валентин Николаевич Пармон (2016 год), академики Алексей Эмильевич Конторович (2009 год) и Владимир Елиферьевич Накоряков (2007 год).

Год столетия Беляева

Одним из главных событий прошлого года стало столетие со дня рождения академика Дмитрия Константиновича Беляева – ученого с мировым именем, много лет возглавлявшего Институт цитологии и генетики СО РАН.

К этой дате было приурочено сразу несколько мероприятий. И прежде всего, открытие памятника Ученому и его доброй лисе. Такой образ для увековечивания памяти академика был выбран не случайно. С именем Беляева связаны возрождение генетики в нашей стране, организация и становление СО АН СССР и Института цитологии и генетики в его составе, налаживание связи с мировым генетическим сообществом и признание отечественной классической генетики. Но более всего академик известен своим экспериментом по выведению одомашненных лис. В результате удалось создать уникальную, известную во всем мире, популяцию дружелюбных по отношению к человеку серебристо-черных лисиц, поведение которых формируется на генетической основе и стабильно сохраняется в поколениях.

Автором проекта выступил создатель другой популярной достопримечательности Академгородка  – скульптуры «Мышь, вяжущая ДНК» – художник Андрей Харкевич. Сам памятник делал известный красноярский скульптор Константин Зинич. Сбор средств на создание памятника осуществлялся добровольным народно-общественным финансированием. А открылся он 7 августа 2017 года, в первый день проведения Международной конференции «Беляевские чтения», так же посвященной 100-летию академика АН СССР Д.К. Беляева.

Эта конференция стала еще одним важным событием в жизни Института цитологии и генетики. В своем вступительном слове академик Николай Колчанов отметил:

– Главная заслуга Дмитрия Беляева перед сегодняшними российскими биологами в том, что в самые тяжелые для нашей генетики времена он продолжил работу в этой области знаний, творчески применив наработки отечественной школы генетиков.

Благодаря трудам таких выдающихся отечественных биологов, как Вавилов, Шмальгаузен и Беляев, был сформирован целый комплекс согласующихся между собой фундаментальных эволюционных представлений, закладывающих основы новой эволюционной концепции, которую можно назвать «системной теорией эволюции».

Если синтетическая теория эволюции описывала генетические процессы на уровне популяции, то в настоящее время – особенно в связи с развитием геномных технологий и комплексных методов изучения живых систем – наиболее актуальным является понимание того, ЧТО происходит на уровне отдельного организма. В свое время Иван Шмальгаузен заложил основы теории стабилизирующего отбора, а Дмитрий Беляев – теорию дестабилизирующего отбора. Эта теория показывает, как при изменении среды (в конкретном случае речь шла о взаимодействии с человеком) происходит «вскрытие» замаскированной ранее генетической изменчивости, что является основой для формирования новых фенотипов.

Работа в данном направлении остается актуальной и по сей день, что доказано большим количеством докладов ученых со всего мира, прозвучавших на конференции. А еще на ней был поднят вопрос о том, что в ИЦиГ сильно не хватает регулярной конференции по генетике животных. Есть замечательная международная конференция по биоинформатике и смежным с ней темам – BGRS, – которая этим летом отметит свое 20-летие. Есть международная конференция «Генетика, геномика, биоинформатика и биотехнология растений», которая прошла уже трижды и также пользуется интересом со стороны научного сообщества. А по генетике животных и человека аналогичных мероприятий у ИЦиГ в настоящее время нет.

Поэтому прозвучало предложение сделать такую регулярную международную конференцию, которая будет проходить по нечетным годам. Будет она носить имя Беляева или нет – вопрос открытый. Но решение о ее проведении уже принято, как и то, что раз в десять лет в ее рамках будут проходить «Беляевские чтения».

Юбилей академика вызвал новый всплеск интереса к его знаменитому эксперименту с лисами далеко за пределами Академгородка.

Весной прошлого года издательство Университета Чикаго (University of Chicago Press) даже выпустило книгу Ли Дугаткина и Людмилы Трут на эту тему. Ли Дугаткин (Lee Alan Dugatkin) – известный американский исследователь и писатель, автор целого ряда научно-популярных книг, таких как «Эмоциональная жизнь животных», «Уравнение альтруизма» и другие. Доктор биологических наук, профессор Людмила Трут – главный научный сотрудник лаборатории эволюционной генетики ИЦиГ СО РАН, одна из главных соратниц Дмитрия Беляева в его экспериментах с лисицами.

Про доместицированных лис написано огромное количество статей, как в научных журналах, так и в обычных СМИ. Но «How to tame a fox and build the dog» («Как приручить лису и построить собаку») стала первой книгой (а не статьей), полностью посвященной событиям, происходившим на звероферме Института цитологии и генетики. На ее страницах подробно рассказывается о самом эксперименте, его последствиях и о людях, десятки лет жизни посвятивших этой увлекательной и в то же время грандиозной научной задаче.

Популярности книге добавило то, что она является научно-популярной (адресованной широкому кругу читателей) и написана очень живым литературным языком. В результате, только в течение первого года после выпуска, было напечатано несколько дополнительных тиражей. А недавно она привлекла внимание и Американской ассоциации содействия развитию науки (The American Association for the Advancement of Science).

Ассоциация является крупнейшим в мире научным сообществом и издателем известного научного журнала Science, который выходит еженедельным тиражом более ста тысяч экземпляров. Но главная ее цель, согласно уставу этой международной некоммерческой организации, «продвигать науку, инженерию и инновации во всем мире на благо всех людей». С этой целью AAAS, в частности, ежегодно присуждает ряд наград ученым, исследователям и инноваторам. В том числе, приз за лучшие научно-популярные книги года – своего рода аналог премии «Оскар» в сфере «научпопа».

В 2018 году в номинации «лучшая научная книга для молодежи» («Young Adult Science Books») победу одержала совместная работа Людмилы Трут и Ли Дугаткина.

– Впервые я рассказала мировой общественности об эксперименте с лисами на страницах журнала «American Scientist», – вспоминает Людмила Николаевна. – Отклик был очень активным: я получила множество писем, не только от ученых, но и от людей разных профессий, студентов. Такая реакция читателей вдохновляла меня и вселяла уверенность, в том числе и тогда, когда мы с Ли Дугаткиным взялись за написание этой книги. И я бесконечно благодарна за это всем нашим читателям.

Очевидно, что книгу об эксперименте Беляева ждет еще не одно переиздание. И хочется верить, что уже в ближайшее время к англоязычному варианту добавится и перевод на русский язык. Чтобы о работе ученого смогли больше узнать и в его родной стране.

Наталья Тимакова

«Институт занимается задачами управления всем»

На Всероссийской междисциплинарной конференции «Социофизика и социоинженерия», прошедшей в конце мая, выступал членкор Российской академии наук, директор ИПУ РАН Дмитрий Новиков. Мы поговорили с ним после конференции об управлении как области научных исследований, итогах пяти лет существования ФАНО и системе управления наукой в России.

— В своем докладе вы описывали поведение человека в толпе. В ИПУ обращаются госструктуры за такими решениями? И не только поведение человека в толпе, но и, например, «разжигание народных масс».

— Это не обязательно должна быть толпа на улице. Это могут быть пользователи в социальных сетях. «Действие» может выражаться в том, чтобы вы изменили свою позицию по отношению к чему-то, а не предприняли физическое действие.

Этим исследованиям у нас уже, наверное, 10 лет. В 2010 году вышла первая в России книга по задачам управления в социальных сетях. Тематика интересна, в первую очередь, тем, кто должен обеспечивать безопасность — информационную безопасность или защиту человека от информации, безопасность государства от тех или иных экстремистских проявлений, ну и безопасность людей на массовых мероприятиях. Мы очень плотно работаем со структурами, отвечающими за эти аспекты безопасности.

— У вас заказывают исследования? Например, те же органы, которые отвечают за безопасность?

— Заказывают. Но детализировать не могу.

— А [коммерческие] компании в институт обращаются? Заказывают вам исследования, хотят что-то улучшить у себя?

— Давайте посмотрим на тематику института.

Институт занимается задачами управления всем. И в большей степени это управление техническими объектами: авиация, космос, подводные лодки, атомные станции, химические заводы, металлургические заводы с точки зрения управления производством.

Редко бывает так, что кто-то приходит и говорит, что у него есть проблемы в организационном управлении и он хочет, чтобы мы помогли их решить. Хотя и такое бывает, но это должен быть очень продвинутый руководитель.

Мы достаточно много занимаемся корпоративным управлением в разных отраслях, и в ВПК, и в медийных корпорациях, и с регионами работаем.

— Вопрос и вызван спецификой вашего института. С одной стороны, у вас глубокая наука, с другой — максимально прикладная сфера.

— Наверное, институту повезло с историей, потому что в свое время он был двойного подчинения — Академии наук и Минприбора СССР. С точки зрения Академии наук результат должен был выражаться в статьях, книгах, фундаментальных исследованиях. С другой стороны, Минприбору нужно было решать вполне конкретные проблемы. Поэтому с самого основания происходит синтез науки и практики.

А создавали институт в 1939 году. Представьте себе это время: уже понятно, что скоро будет война, нужно было решать проблемы автоматизации как производства, так и управления, вооружения и так далее. Первый директор и основатель института академик Виктор Сергеевич Кулебакин, ведущий в союзе специалист по авиационной электроэнергетике, был генералом авиации. И сегодня половина бюджета института — это внешние заказы. А заказчик не будет платить за теоремы. Его интересует технология, которая приносит ему пользу.

— Сами структуры власти используют ваши наработки? Вы бы хотели что-то посоветовать изменить в системе управления?

— Приведу примеры. Есть закон о стратегическом планировании в РФ, который охватывает всю систему государственной власти и регламентирует деятельность в области стратегического планирования. В свое время институт участвовал в экспертизе этого закона, и слава богу, что многое удалось изменить по сравнению с первоначальной версией. Но, к сожалению, изменить удалось не все. В России — и я считаю, что это беда нашего менеджерского образования с оглядкой на запад, — у нас менеджеры во власти считают, что достаточно запланировать, например, создать целевую программу или программу развития предприятия, и все будет само реализовано. Теория управления говорит, что как минимум необходимо иметь обратную связь, мониторить ситуацию: сравнивать план с фактом, осуществлять оперативное управление. И только такой полноценный цикл и есть управление.

В закон о стратегическом планировании нам удалось добавить ряд важных слов про мониторинг, но все равно это остался закон о планировании. Это не система управления.

Ну спланировали — и все, план положили на полку. С задержкой в год-два отчитались о том, что план выполнен. А то и забыли об этом.

Второй аспект — целевые программы. Программа — это когда декларируется цель, цель декомпозируется на задачи, вводятся индикаторы, отражающие степень решения задач, перечисляются мероприятия, дальше выделяются ресурсы. Все это замечательно и абсолютно правильно. Только все это должно быть между собой связано. Это беда нашей системы программно-целевого управления на уровне государства, федеральных органов исполнительной власти, госкорпораций и так далее.

Есть опыт анализа одной из крупных региональных программ. Совершенно элементарный анализ соответствия индикаторов задачам, а задач — мероприятиям показал, что треть задач не закрыта мероприятиями, а половина мероприятий не соответствует ни одной из задач. Причем для этого не нужно знать высокую математику.

Поймите реакцию заказчика, когда ему был продемонстрирован отчет: программа уже реализована, миллиарды потрачены. Что делать в такой ситуации? Положить отчет на полку.

А ведь есть простые технологии. Если их внедрить, сделать массовыми, то эффективность расходования бюджетных средств можно было бы существенно увеличить.

— Какие технологии, например?

— Анализа целевых программ хотя бы. Причем они простые. Этому можно было бы научить людей достаточно быстро. Адаптировать под отраслевую или региональную специфику, а потом научить. Не нужны высокие технологии, не нужен искусственный интеллект. Просто нужно хотеть и об этом задумываться.

— Президент РАН говорит, что институты должны занять активную позицию в работе с властью, особенно что касается законов. Вы не хотите к нему обратиться с этой историей?

— Зачем обращаться к президенту РАН? Надо обращаться в Госдуму, Счетную палату.

— Чтобы это была официальная инициатива РАН.

— Обращались.

Ну объясните, какому чиновнику выгодна объективизация его деятельности? Как говорил Петр Первый, «чтобы дурь каждого всем видна была»?

А тут дело же не о дури идет. Где-то от дури кто-то вписал те или иные мероприятия просто так, нафантазировал. А где-то это большие деньги, которые кто-то освоил.

— Раз мы заговорили о РАН. В этом году исполняется пять лет реформе Академии. Как вы оцениваете реформу?

— ФАНО выполнило те задачи, которые были на него возложены в 2013 году. Выполнило хорошо: они наладили управление имуществом, не допустили провала финансирования. Систему оценки, кривую — но сделали. Но это тема отдельного разговора. Здесь не столько ФАНО виновато, сколько те же эксперты Академии наук.

Другое дело, были ли правильными те задачи, которые ставились перед ФАНО. Объективизировать имущество надо было. Но научному развитию и снижению бюрократической нагрузки на институты это не способствовало: бумагой нас за это время завалили просто жутко. От 5 до 10 бумаг в день я получал из ФАНО.

Сейчас складывается удачная конструкция с точки зрения синтеза науки и высшего образования. Они близки идейно и содержательно. Образование — это подпитка кадрами. Наука — это подпитка свежей информацией для системы высшего образования. Это хороший симбиоз.

За последний год вроде бы стал налаживаться диалог Академии наук и ФАНО. Так как Михаил Михайлович Котюков сохранил курирование академических институтов, можно надеяться, что этот контакт и дальше окажется плодотворным.

Хотелось бы только, чтобы чиновники, во-первых, в содержательном смысле побольше слушали ученых. А во-вторых, нужно внимание государства к восстановлению отраслевой науки.

Потому что отраслевая наука во время перестройки и последующих лет очень ослаблена. И сейчас на РАН пытаются «натянуть» весь инновационный цикл от фундаментальных исследований до опытного образца, передаваемого в производство. И эта ситуация за пять лет только ухудшилась. Нужно восстанавливать участок отраслевой науки, которая брала бы у фундаментальной науки результат, доводила бы до производства. Это стратегическая задача.

У нас очень много форм организации и поддержки науки: есть планы фундаментальных научных исследований государственных академий наук — хорошая, системная программа, запущенная еще в 2012 году. У нас есть РФФИ, РНФ, есть институты развития в виде Сколково, Роснано и других организаций. У нас есть Национальная технологическая инициатива, у которой есть разные активности, которые происходят под эгидой АСИ и РВК. У нас есть программа по цифровой экономике, Стратегия научно-технологического развития, советы по научно-технологическому развитию. Есть сильная наука в отраслевых министерствах и ведомствах: у Минпромторга есть свои институты, у Роскосмоса, Росатома. И вся эта система запутана до безобразия. А кто за что отвечает, где какие деньги, кто что делает — непонятно. Явно неправильная система, порядок в ней навести надо. Если Министерству науки и высшего образования удастся этот клубок распутать, упорядочить и возглавить, это будет здорово.

— В больших компаниях бывает, что одни и те же задачи пытаются решить разные отделы, а потом из них выбирают лучшее решение.

— Конкуренция вполне нормальна. Она вполне нормальна и в фундаментальной науке. Одни и те же идеи независимо друг от друга возникают в разных точках земного шара почти одновременно. Наверное, это какой-то закон природы. И это хорошо.

Если вспомнить СССР, то разрабатывалось несколько изделий одного и того же типа, а потом принималось решение, какое встанет на вооружение. И колоссальные деньги вкладывались в дублирование. Это было осознанное соревнование. Другое дело, плохо, когда люди сидят в соседних комнатах, занимаются одним и тем же, но не знают об этом и не обмениваются информацией. Это неэффективно. Неуправляемая конкуренция — это бардак.

— Получается, что сейчас между институтами и научными группами нет налаженного потока информации? Это главная беда?

— Нет. Не дело государства — налаживать здесь потоки. Ученые общаются на конференциях, читают статьи друг друга в журналах. Поиск информации сейчас вообще не является проблемой. Я думаю, здесь не требуется каких-то усилий для создания, усиления системы коммуникации.

Другое дело, что задача руководителей научных или научно-производственных организаций — наиболее эффективным способом комбинировать компетенции сотрудников при решении конкретной задачи. Руководитель должен всегда знать, чем занимаются его подчиненные с той или иной степенью детальности. Нельзя знать все, но примерно понимать, кто чем занимается и кого надо вытаскивать под тот или иной проект, — это задача руководителя.

Алиса Веселкова

Неандертальцы, денисовцы и другие люди

Сезон публичных лекций в ИЦиГ продолжается. И совсем недавно, на очередной из них, ведущий научный сотрудник межинститутского сектора молекулярной палеогенетики, к.б.н. Александр Пилипенко рассказал, что нового происходит в этой научной области.

На сегодня накоплен большой объем данных о предках человека, но по-прежнему вопросов у науки остается куда больше, чем уже полученных ответов. Известно, что колыбелью человечества является Африка, именно здесь формировались все ранние представители рода Homo. И, как минимум, дважды, еще до появления Homo sapiens, представители более ранних видов (формы Homo erectus) покидали этот континент и расселялись по планете.

Первая миграционная волна прошла около полутора миллионов лет назад, ее археологические памятники найдены по всей территории Азии и местами – в Европе. Вторая волна случилась примерно через миллион лет: тогда предки человека сумели продвинуться на север дальше и  освоить заметную часть континентальной Европы.

На протяжении тысячелетий потомки этих «переселенцев» продолжали развиваться за пределами Африки, порождая новые разновидности предков современного человека. В частности, так на европейской территории появились неандертальцы, схожие процессы протекали и в Азии.

А затем, около 200 тысяч лет назад, на историческую сцену выходит, наконец, и человек современного анатомического типа – Homo sapiens. Есть две главных гипотезы того, как это происходило. Гипотеза недавнего африканского происхождения утверждает, что весь процесс протекал на территории Черного континента, покинув который, человек вытеснил другие формы гоминид, не смешиваясь с ними. Вторая – гипотеза мультирегионального происхождения – исходит из того, что шла параллельная эволюция разных групп гоминид, которая привела к формированию различных территориальных групп анатомически современного человека.

И тут к спорам антропологов и археологов подключились генетики. Данные первых генетических исследований были в пользу первой гипотезы. Но затем палеогенетикам удалось, секвенировав геном неандертальца, установить, что 1-3 % его генов имеют все современные люди. Иначе говоря, в каждом из нас есть немного от неандертальца. Что, конечно, стало весомым аргументом в пользу второй гипотезы. Весомым, но не окончательным, в силу чего она по-прежнему является гипотезой, а не точно установленным фактом.

– Самый полный геном неандертальца, который удалось извлечь на сегодня, был получен из кости знаменитой Денисовской пещеры, - напомнил Александр Пилипенко. – Хотя и были сомнения, является ли он типичным для всех неандертальцев или только для восточной группы.

Ученые секвенировали геном денисовского человека по найденной фаланге пальца маленькой девочки В той же знаменитой уже пещере был обнаружен еще один вид доисторического человека – т.н. денисовский человек, чей геном ученым также удалось секвенировать. Вид оказался хоть и родственным неандертальцам, но все же вполне себе самостоятельным. И также внес свой вклад в генотип современного человека. Наиболее ярко он проявился у населения Океании (до 5-6 % генома).

Примерно так выглядели наши представления об эволюции человека два года назад, отметил докладчик и предложил рассмотреть, что же изменилось за это время. А произошло немало интересного.

Первое, что новые исследования поставили под сомнение, это дату возникновения анатомически современного человека. В прошлом году вышла статья про исследование геномов костных останков коренных африканских туземцев (в п.о. бушменов). Речь шла об относительно свежих находках, возраст которых не превышал 2000 лет. Но это секвенирование позволило «очистить» геном древнего человека от «евразийских примесей». А изучение этого «очищенного» генома в свою очередь позволяет ученым заметно перенести дату возникновения человека: с 200 до 300-350 тысяч лет тому назад. В том же году данные палеогенетиков подтвердили археологи независимой датировкой останков древнего человека (пяти особей) и их орудий труда, найденных в Марокко.

– Сегодня продолжается активное изучение массива останков древнего человека, найденных в первой половине ХХ века в Африке. Их было очень много, все они плохо датированы, да и технологии раскопок оставляло желать лучшего. Так что работы там предстоит еще много и она может дать интересные результаты, – резюмировал Пилипенко.

Не все так однозначно и с датой окончания «африканского детства» анатомически современного человека. В этот период его жизнь протекала исключительно на территории Африки. Долгое время считалось, что он завершился около 60 тысяч лет назад. Но еще в 1930-е годы на территории Израиля (в пещерах Скул и Кавзех) были раскопаны места стоянок древних людей. Найденные там останки датированы возрастом в 80-120 тысяч лет, что существенно древнее установленной границы миграции человека за пределы Африки. А несколько месяцев назад были озвучены результаты датировки останков, найденных на третьей стоянке, по соседству с первыми двумя. Их возраст составил и вовсе 180 тысяч лет. Причем принадлежность этих костей к виду Homo sapiens никем из ученых не оспаривалась. Дискуссия сейчас идет по другому поводу: жили ли люди в этой части Ближнего Востока на протяжении этих тысячелетий непрерывно (а значит, мы существенно переносим границу выхода человека из Африки), либо это были кратковременные случайные миграции, не меняющие картину в целом. К исследованию этих пещер подключились ученые Института археологии и этнографии СО РАН, у которых накоплен огромный опыт исследования памятников палеолита в Денисовской пещере и ее окрестностях.

В 1930-е годы на территории Израиля (в пещерах Скул и Кавзех) были раскопаны места стоянок древних людей. Найденные там останки датированы возрастом в 80-120 тысяч лет Еще больший резонанс вызвали находки китайских археологических экспедиций. На территории своей страны они нашли памятник, относящийся к анатомически современным людям, возрастом 90-100 тысяч лет. Эта находка (в отличие от израильских) относительно долго считалась спорной. Но после проведения ряда независимых датировок китайцам удалось убедить в своей правоте, по крайней мере, журнал Science, где была опубликована соответствующая статья.

– Это может означать, что речь не идет о каких-то единичных выплесках людей на прилегающие территории, мы имеем дело с масштабной миграцией, которая докатилась до Юго-Восточной Азии, – отметил Александр Пилипенко.

В итоге, сейчас предлагается перейти к модели двух больших миграционных волн, первая была 80-120 тысяч лет, а вторая 30-60 тысяч лет назад. Первая шла исключительно на восток и привела к заселению Азии. Вторая волна затронула и азиатские, и европейские территории. Она же «принесла» нам гены неандертальцев.

Надо помнить, что описанные выше исследования не меняют существующую картину миграций Homo erectus, которые предшествовали этим волнам и, собственно, дали начало неандертальцам и денисовцам. В Европе дальнейшие события прошли, с эволюционной точки зрения, относительно скучно: тысячелетиями жили неандертальцы, особо не меняясь, а потом, примерно 40 тысяч лет назад, пришли предки современного человека и за пару тысяч лет полностью их вытеснили, успев в ходе процесса немного перемешаться.

В Азии все проходило несколько разнообразнее. И самая запутанная картина складывается в северной ее части, в частности, на Алтае, где в процессы взаимодействия кроманьонцев и неандертальцев активно включились и денисовцы. В частности, есть свидетельства совместного существования неандертальцев и денисовцев, но материальные следы человека современного типа появляются намного позже. Зато остались генетические следы взаимодействия всех трех видов. И вопрос времени прихода анатомически современного человека в Западную Сибирь (равно как и исчезновения из нее денисовцев с неандертальцами) остается открытым. Зато в Восточной Азии нет никаких свидетельств существования двух последних видов.

Тем временем исследования последних двух лет смогли отодвинуть временные рамки проживания предков человека в Денисовской пещере почти на 100 тысяч лет назад. Правда, остается вопрос, насколько непрерывным было обитание денисовцев в тех краях. Однако получается, что они могли взаимодействовать с обеими волнами миграции Homo sapiens, если те достигали Алтая в указанное время.

– К сожалению, нигде больше за пределами пещеры генетические останки денисовцев пока так и не найдены, а антропологические следы искать тяжело, так как мы плохо знаем их внешний облик, найдено слишком мало костных останков, – подчеркнул докладчик.

И это обстоятельство значительно осложняет процесс изучения этого вида древнего человека, путей его расселения и взаимодействия с другими гоминидами. Но наличие генов денисовцев в современных человеческих популяциях говорит о том, что такие процессы имели место быть. К примеру, именно их влиянием объясняют наличие генетических механизмов адаптации к условиям высокогорья у современных тибетцев.

Так что археологам и палеогенетикам предстоит проделать огромную работу, прежде чем мы получим целостную и непротиворечивую картину заселения человеком восточной части Евразии. Помочь в этом могут новые механизмы работы с полногеномными данными, которые создаются в настоящее время, которые направлены не столько на секвенирование древних геномов, сколько на более тщательный поиск и анализ их «следов» в геноме современных людей. Первые работы, основанные на таких новых алгоритмах, были опубликованы уже в этом году. И вновь эти результаты, отвечая на одни вопросы, задают еще больше новых, которые еще ждут своих исследователей.

Наталья Тимакова

В оформлении материала использованы иллюстрации, представленные на лекции А.С. Пилипенко

Нуми-Торум и "Ворошиловский стрелок"

Современная культура оказала большое влияние на религиозные верования и обряды коренных народов Сибири и Севера России, выяснили изучающие их быт новосибирские этнографы.

Ведущий научный сотрудник Института археологии и этнографии Сибирского отделения РАН Аркадий Бауло, который изучает культуру проживающих в Ханты-Мансийском и Ямало-Ненецком автономных округах хантов и манси более 30 лет, рассказал ТАСС, как по мере освоения Севера менялись представления о божествах у коренного населения.

Военный мундир и чиновничья шпага

Ханты и манси, или обские угры, живут на севере Западной Сибири, на территории Ханты-Мансийского-Югры и Ямало-Ненецкого автономных округов. Первые упоминания об их культуре относятся к XVII веку. Пантеон богов хантов и манси состоит из божеств, живущих под землей, на земле вместе с людьми, в лесах и на небе. Отца "трех миров", бога Нуми-Торума изображать не принято - почитают его детей, например, Небесного всадника Мир-Сусне-Хума, а также других духов, стоящих ниже в божественной иерархии.

Ханты и манси верят, что раньше землю населяли богатыри, которые после смерти стали духами-покровителями. При этом на первом этапе Сибирь и Север осваивали как раз военные отряды. По словам Аркадия Бауло, для хантов и манси они стали символом власти, в том числе божественной. Верования предполагают изготовление фигур божеств, чтобы позднее делать для них одежду и дарить различные вещи, которые в специальных сундуках могут копиться веками.

"Бог для хантов и манси - это некая высшая власть, они в его подчинении. Поэтому, когда они делали фигуры богов в том или ином веке, то старались наделить фигуры символами власти конкретного времени. Мы находили фигуру хантыйского покровителя, одетого в мундир пехотинца времен Екатерины II. В конце XVIII века власть Российского государства была преимущественно военной - богам дарили мундиры, шпаги, палаши", - рассказывает этнограф.

На духов-покровителей одежду надевают слой за слоем, то же происходит и с подношениями в священных сундуках, которые ставят на чердаки домов - порой в одном сундуке могут храниться подарки божествам от нескольких поколений. Если ткань портится, то такую одежду не выбрасывают, а увозят подальше в лес - духи живут там.

В XIX веке власть в России стали представлять чиновники. "Мы встречали преподнесенную хантыйским богам чиновничью шпагу, у ненцев путешественники XIX века видели фигуру божка, одетую в чиновничий мундир. В священных сундуках хантов и манси попадается немало металлических пуговиц с мундиров чиновников - чтобы боги могли этот элемент на свою одежду "нашить". На святилищах мы обнаруживали даже очки как у чиновников - тоже символ власти", - говорит ученый.

Советские значки и немецкие пуговицы

Одним из самых интересных артефактов Бауло называет шлем с меховой опушкой, относящийся к 20-30-м годам прошлого века. На нем изображен Небесный всадник, скачущий под солнцем. Он одет в буденовку, а на боку у бога кобура с наганом. Установившаяся в стране советская власть оставила свой отпечаток в религиозных обрядах хантов и манси - этнографы встречали фигуры со значками воина-спортсмена, отличника охотничьего промысла, знаком "Ворошиловский стрелок", а также фигуру духа-покровителя в женском облике с медалью "Материнская слава" на груди.

Необычным оказалось и изображение духа-покровителя оленьих стад у хантов. На нем пришит железный царский герб с двуглавым орлом, но перевернутый. По легенде, после революции и свержения монархии герб пришили вверх ногами.

"Мы находили на территории Ханты-Мансийского и Ямало-Ненецкого автономных округов более десятка пуговиц 1940-х годов - с мундиров солдат подводного флота Германии. Ханты и манси тоже клали их духам-покровителям: неважно, вражеские это атрибуты или нет, важен именно элемент власти", - говорит Бауло.

Одежда для богов

По словам Бауло, еще в конце 1980-х годов домашним духам - покровителям одежду шили вручную по традиционной технологии. В последние годы ханты и манси стали относиться к нарядам духов проще, в основном их стали покупать.

"Порядка тридцати лет мы наблюдаем за святилищем около деревни Хулимсунт в Березовском районе Ханты-Мансийского округа-Югры. В 1989-м в амбарчике - месте, где размещаются божества, - сидят "отец", "сын" и "мать". У них на головах традиционные конусовидные шапочки, женщина в платке. В 2006 году они сидели уже в современных рубашках, а у главного духа на голове спортивная вязаная шапка с надписью BOSS - потому что он главный. Если в 1980-90 годы богам шили традиционную одежду, то сейчас глобализация - проще пойти в магазин и купить богам рубашку", - рассказывает Бауло.

Другой пример использования благ цивилизаций относится к советскому времени. Когда умирает человек, ханты и манси, говорит этнограф, делают его фигурку, в которую, как считается, должна вселиться душа, когда она возродится в следующем поколении. "В один из ящиков с такой фигуркой был положен проводной телефонный аппарат 1970-х годов, чтобы покойник мог позвонить родственникам с того света", - отмечает ученый.

По мнению Бауло, религиозная культура хантов и манси забывается - люди уезжают из традиционных поселков, и становится некому совершать обряды. Например, в деревне Хурумпауль в Березовском районе ХМАО в 1980-х годах было 15-20 домов, и было три святилища - поселковое, мужское и женское. Сегодня жилыми остаются три дома, нет женщин - исчезли специальные женское и мужское святилища, а на поселковое практически никто не ходит.

Верования поддерживаются там, где есть большие коренные семьи, например, в деревне Хулимсунт. Изначально деревня была мансийской, но после того, как рядом построили крупную газокомпрессорную станцию, в ней поселилось много русских, украинцев, молдаван - образовался большой современный поселок, манси в котором живет очень мало. "Однако их священное место процветает и тщательно содержится. Многое зависит от отдельных семей, если они большие, им легче продолжать традицию", - отмечает ученый.

Базис технологического прорыва

Совсем недавно президент Владимир Путин заявил о том, что, если страна в ближайшее время не совершит технологического прорыва, то нас ждет «безнадежное отставание». «Реально отстанем, знаете. А это тяжелые очень последствия будут», - сказал глава государства. Он также подчеркнул, что технологическое отставание не только снижает безопасность и экономические возможности России, но и угрожает её суверенитету: «Отставание — главная угроза для России, это как тяжелая болезнь, такую ситуацию надо переломить».

В послании Федеральному собранию он сослался на новую волну технологических изменений. Россия обязана вписаться в этот тренд.

«Тот, кто использует эту технологическую волну, вырвется далеко вперед. Тех, кто не сможет этого сделать, она, эта волна, просто захлестнет, утопит», — так обрисовал ситуацию руководитель страны.

В свете сказанного большая роль отводится науке. Ученые, заметил президент на съезде ректоров, должны «смотреть за горизонт» и думать о дальнейшем развитии. «И людей нужно готовить именно для этого», - заключил Владимир Путин.

В целом всё сказано как будто верно. И нельзя не радоваться тому, что наверху не приукрашивают ситуацию, ясно осознавая намечающуюся проблему. В то же время необходимо понимать, что проблема не имеет простого решения. Технологический прорыв не создается путем адресации правительственных поручений научным организациям или научному сообществу в целом (включая вузы). Хотим мы того или нет, но для того, чтобы выйти на магистральный путь научно-технического прогресса, необходимо совершенствовать всю систему социально-экономических отношений. Отставание в развитии не есть следствие нехватки каких-то идей или разработок. Это есть результат общей деградации, плохой работы социально-политических институтов, а также экономической отсталости.

Иначе говоря, проблему придется решать в целом, в комплексе (как принято сейчас говорить). Даже если мы «закачаем» в науку огромные суммы, эффект будет кратковременным. Почему? Потому что для серьезных перемен, способных привести страну к лидерству в технологиях, нужны качественные изменения во всех областях жизни. Для долгосрочного развития (а именно так нужно ставить вопрос, когда мы говорим о технологическом лидерстве) необходимо приспосабливать все социально-экономические структуры, прямо или косвенно влияющие на результат.

Опять сошлюсь на советский пример. Чем была обеспечена программа индустриализации, когда страна двигалась «от сохи к атомной бомбе»? Только ли финансированием новых строек и закупками технологий? Напомним, что после революции новая власть, планируя технологический прорыв (а именно так в то время и обстояло дело), запустила программу ликвидации неграмотности и программу электрификации.

То есть кадры и инфраструктура – вот настоящий базис индустриализации. Насколько серьезно в СССР относились к образованию и просвещению, доказывать не нужно. Эти факты общеизвестны. Средняя школа, вузы, профессионально-техническая подготовка всегда были в приоритете.

Параллельно – научное просвещение, пропаганда технических достижений, профориентация, факультативная работа с подрастающим поколением, создание различных кружков и клубов по интересам. Работа в данном направлении рассматривалась как задача государственной важности. Именно с ней во многом увязывался технологический прорыв, успехи в авиастроении, в космонавтике, в тяжелой индустрии, в энергетике.

Если мы сейчас собираемся повторить былые успехи, то надо ли объяснять, что нам придется идти таким же путем? Это во многом совершенно понятные вещи. Однако насколько серьезно к ним относятся наверху?

Возьмем наше образование. Каких «успехов» мы добились на этом поприще за последние годы? Реформу, которую провело Министерство образования, не распекает сейчас только ленивый. Единый государственный экзамен в средней школе постоянно подвергается критике со стороны весьма авторитетных людей. Недавно на эту тему высказался председатель СО РАН Валентин Пармон:

«Если посмотреть, как идет подготовка к единому госэкзамену, то ребят просто пытаются приучить отвечать на вопросы - не думая. Мы чувствуем, насколько сильно отличается система подготовки по старой схеме от того, что есть теперь. Раньше дети думали, а теперь они должны попасть галочкой в правильную строчку», - посетовал ученый.

С вузами дела обстоят не лучше. Преподаватели завалены составлением бессмысленной отчетности, средний возраст сотрудников кафедр стремится к пенсионному, не хватает высококлассных специалистов по новым дисциплинам. Профессия преподавателя все еще остается непрестижной. И у нас нет никаких оснований считать, что государство намерено в корне поменять ситуацию. Парадоксально, но факт: после «реформы» образования нам снова требуется реформа – для исправления того, что было сделано. Вряд ли мы можем рассчитывать именно на такой поворот. Скажем, если глава государства объявит, что система образования у нас не соответствует мировому уровню, а потому срочно требуется «реформа», его слова будут содержать двусмысленность, поскольку «реформой» принято сейчас называть то, от чего как раз вздрагивают преподаватели и ученые. Смогут ли наши руководители отрыто признать политику в области образования тупиковой и противоречащей планам развития? Рассчитывать на это сложно.

Если учесть позицию российского главы правительства по этой проблеме, то его памятное пожелание для учителей поменять профессию в случае материальной нужды красноречиво подчеркивает отношение нашего руководства к результатам собственной деятельности. Похоже на то, что ошибок наверху никто не признает. А если так, то любые действия на данном направлении будут преподноситься ими исключительно как дальнейшее «углубление реформ» (что вызовет очередную «порцию» неподдельного ужаса у наших преподавателей и ученых).

Не лучшим образом обстоят и дела с инфраструктурой. Конечно, электрификации всей страны сегодня не требуется (это было сделано до нас), однако модернизация системы энергоснабжения, повышение энергоэффективности, реконструкция старых станций и строительство новых (более современных), развитие региональной энергетики, создание «умных сетей», расширение доли ВИЭ – всё это давно назрело. Минэнерго время от времени радует нас изданием отдельных документов и целевых индикаторов. Но где увязка этих планов с технологическим прорывом? Силами одного министерства задачи такого уровня не решаются. Создание базиса для новой индустрии должен, по-хорошему, инициировать  сам глава государства, обозначив тем самым жизненно важные для страны  приоритеты (как и было в советские времена и как это происходит до сих пор в развитых странах).

Простой пример. В Новосибирской области принята программа реиндустриализации. Об этом у нас говорят на каждом углу. И опять возникает тот же вопрос: какое место уделяется здесь модернизации системы энергоснабжения? По большому счету, отдельной программы по развитию энергетики у нас в регионе нет (дальше, как говорится, можно и не комментировать).

Таким образом, мы вынуждены констатировать, что базисные вещи (в данном случае – образование, подготовка кадров и энергетическая инфраструктура) отодвигаются если не на задний план, то рассматриваются как «параллельные» задачи, находящиеся в компетенции отдельно взятых министерств и ведомств. Это свидетельствует о том, что упомянутый комплексный подход к обеспечению технологического прорыва банально подменяется передачей «поручений» отдельным структурам. В данном случае – научным организациям. Получается, что технологический прорыв – это забота ученых. Остальные как будто могут не беспокоиться…

Олег Носков

Smart EnergyGate – новое слово в распределенной энергетике

Исполняющий обязанности министра жилищно-коммунального хозяйства и энергетики Новосибирской области Денис Архипов заявил: «Из 9-ти вопросов, рассмотренных на двух заседаниях, четыре касались локальной генерации и задач взаимодействия предприятий энергетики Новосибирской области с разработчиками технических решений. Что говорит об актуальности этой проблемы».

В ходе заседания экспертного совета был рассмотрен доклад Ассоциации НППА «Автоматика управления режимом параллельной работы электростанций малой мощности при их прямом включении в электрические сети мощных энергосистем».

Программно-аппаратный комплекс для автоматизации гибридных энергосистем, включающих объекты малой распределенной генерации с использованием технологии Smart grid, был разработан специалистами новосибирской компании “Модульные Системы Торнадо” (участник Ассоциации НППА) и кафедры автоматизированных электроэнергетических систем Новосибирского государственного технического университета.

От идеи до воплощения в «железо» прошло пять лет. Прототип устройства получил название Smart EnergyGate.

В 2016 году в рамках программы реиндустриализации Новосибирской области коллективом разработчиков была получен грант от Фонда содействия развитию малых форм предприятий в научно-технической сфере (Фонд содействия инновациям) на создание прототипа системы (проект «Разработка перспективных средств автоматизации для систем контроля и управления в энергетике и других отраслях»).

6 марта 2018 г. проект был представлен и.о. Губернатора НСО Андрею Травникову во время его визита в компанию «Модульные Системы Торнадо» и встречи с членами Ассоциации «НППА». Одним из результатов этой встречи стало поручение и.о. Губернатора: «Временно исполняющему обязанности заместителя Губернатора Новосибирской области С.Н. Сёмке совместно с Ассоциацией «НППА» (Верховод Д.Б.) и ООО «Модульные системы Торнадо» (Сердюков О.В.) организовать рассмотрение детализированных паспортов и презентаций проектов развития НППА по направлениям «Умная муниципальная энергетика» и «Умная распределенная генерация» и подготовить доклад о возможных решениях по их реализации». 

В рамках исполнения поручения были разработаны дальнейшие шаги по реализации проекта. В частности, в настоящее время готовится внедрение пилотных решений на базе микрорайона «Березовый» г. Новосибирска и клиники им. Мешалкина.

На данный момент существенной проблемой является отсутствие промышленных решений, позволяющих присоединить локальную генерацию на параллельную работу с энергосистемой с выполнением следующих условий:

- на порядок более низкая стоимость техусловий на присоединение к электрическим сетям;

- присоединение на генераторном напряжении;

- сохранение энергоснабжения локальных потребителей при авариях;

- защита оборудования от последствий аварий;

- полностью автоматическое управление во всех режимах работы генерации и сети.

Александр Фишов, профессор НГТУ, один из соавторов технического решения Предлагаемое решение имеет принципиальное отличие от традиционных:

- комплекс способен работать в автоматическом режиме и не требует участия в своей работе операторов с высоким уровнем квалификации;

- позволяет отказаться от применения для связи с энергосистемой преобразовательных силовых устройств;

- в отличие от иных решений предлагаемое решение в случае возникновения аварийной ситуации производит опережающее разделение без последствий как для энергосистемы, так и сохраняя оборудование присоединенного энергокомплекса в работе.

Реализация проекта позволит обеспечить возможность работы энергоцентров малой и средней мощности (от 0,5 до 25 МВт) параллельно с региональной электрической сетью для повышения надежности и качества электроснабжения потребителей малой генерации, а также позволит вовлечь в оборот на существующих рынках электрической энергии выработку объектами малой генерации.

Олег Сердюков, директор компании «Модульные Системы Торнадо»: «В качестве целевых рынков для экспорта рассматриваются страны БРИКС и Юго-Восточной Азии. Объем сетевого строительства на целевых рынках к 2035 году оценивается в $270 млрд. Доля подобных устройств в общем объеме сетевого строительства составляет около 10%».

Испытания прототипа должны быть завершены 20 июня. К этой дате планируется проведение круглого стола по проблемам малой распределенной энергетики в Сибирском федеральном округе. В ходе круглого стола планируется:

- выявить общее количества объектов малой распределенной генерации, эксплуатирующихся или планируемых к вводу на территории Сибирского Федерального округа;

- конкретизировать проблемы малой распределенной энергетики и их классификация;

- выработать механизмы решения проблем малой распределенной энергетики.

Протоколом экспертного совета при Министерстве жилищно-коммунального хозяйства и энергетики Новосибирской области зафиксировано решение о поддержке предстоящего круглого стола, включении в состав экспертного совета, прямом участии Правительства Новосибирской области и привлечении к участию предприятий энергетики.

Распределённая генерация (из проекта ГОСТ) – электрогенерирующая система, состоящая из электростанций, подключаемых к распределительным сетям или сетям внутреннего электроснабжения потребителей электроэнергии на напряжении до 110 кВ (включительно), максимально приближенная к узлам потребления, функционирующая в составе электроэнергетической системы или автономно и имеющая в точке присоединения установленную мощность не превышающую 100 МВт, при условии выдачи мощности во внешнюю сеть не более 25 МВт, использующая для производства любые первичные источники энергии, включая возобновляемые, за исключением ранее введенных в эксплуатацию традиционных паротурбинных электростанций.

Smart Grid ("интеллектуальные сети электроснабжения") — это модернизированные сети электроснабжения, которые используют информационные и коммуникационные сети и технологии для сбора информации об энергопроизводстве и энергопотреблении, позволяющей автоматически повышать эффективность, надёжность, экономическую выгоду, а также устойчивость производства и распределения электроэнергии.

Анжела Жарко

Страницы

Подписка на АКАДЕМГОРОДОК RSS