Дышите реже!

Как мы уже знаем, не так давно крупный рогатый скот попал в список «разрушителей» планеты, поскольку эти животные выделяют метан и тем самым неблагоприятно влияют на климат. По этому поводу в нашей стране уже отшутились, как могли. Однако «шутки» на этом не закончились.

Несколько лет назад, описывая климатическую истерию, поразившую часть западной элиты, мы предположили, что коровами дело не ограничится. И в качестве шутки (именно шутки) высказали мысль, что однажды некие продвинутые западные ученые обратят внимание и на представителей Homo Sapiens. Честно признаемся, что мы тогда не были до конца уверены в появлении чего-то подобного ввиду самой абсурдности такой постановки вопроса со стороны науки. Однако, как уже выясняется, климатическая истерия зашла на Западе так далеко, что абсурд начинает приниматься за норму.

Совсем недавно в западной прессе и в социальных сетях появились признания некоторых женщин (в основном – немок), называвших новорожденных детей «убийцами планеты» в силу того, что каждый отдельно взятый человек за свою жизнь оставляет заметный «углеродный след». Отсюда вытекало, что деторождение несет угрозу климату, а значит, является «безответственным» шагом в отношении нашего будущего. Конечно, всё это можно списать на особенности психики таких субъектов, на их высокую впечатлительность и так далее. Однако похоже на то, что подобное восприятие реальности в скором времени получит вполне академическое обоснование.

Возможно, первой ласточкой стало здесь недавнее исследование, проведенное группой британских ученых из Эдинбургского университета и Британского центра экологии и гидрологии. Его результаты были опубликованы в декабре прошлого года. Работа посвящена измерению содержания метана и закиси азота в дыхании человека, а также возможной динамике этих выбросов (!) в масштабах Великобритании. В общем, начало положено.

Отметим, что данное исследование напрямую сопряжено с климатической проблематикой, в чем, якобы, и должна заключаться его актуальность. Уже во введении авторы заявляют о том, что выдыхаемый человеком воздух может содержать в небольших количествах повышенные концентрации метана (CH4) и закиси азота (N2O). Эти газы, напоминают исследователи, способствуют глобальному потеплению в значительно большей степени, чем углекислый газ. Тем не менее, их объемы, выделяемые людьми, пока еще недостаточно подсчитаны, а потому практически не учитывается при составлении глобальных кадастров парниковых газов. Британские исследователи решили устранить данный пробел и оценить реальную долю нашего непроизвольного влияния на климат через дыхание. Пока что речь идет о масштабах Великобритании. Но подобные вещи, естественно, легко экстраполируются.

Для исследования были привлечены 104 добровольца из числа жителей Великобритании. Было собрано 328 образцов дыхания. Применительно к каждому участнику исследования были записаны возраст, пол, диетические предпочтения и привычки к курению. В общем, в объективности полученных данных каких-то сомнений нет. Работа носит эмпирический характер, и результаты вполне могут интерпретироваться и вне климатического контекста. Однако исследователей интересовал именно климатический контекст.

Теперь о самих результатах. Выяснилось, что примерно треть исследуемых (31%) оказались явными «продуцентами» метана. То есть в выдыхаемом ими воздухе концентрации этого газа превышали фоновые значения. В принципе, метан выделяют практически все млекопитающие, включая и человека. Но, как оказалась, среди людей есть отдельные «особи», выделяющие метан в увеличенных количествах. Именно по этой причине их можно назвать «продуцентами» метана. Следовательно, они в состоянии оказывать некоторое влияние на повышение общей концентрации данного парникового газа в атмосфере планеты. Что касается закиси азота, то ее – с некоторыми количественными вариациями -  выделяли все участники исследования.

Сразу заметим, что никакого открытия в этом нет. Например, метаногенная флора нашего кишечника изучается давно. Уже известно, что существует разброс по данному показателю среди разных стран и народов. Почему-то в африканских странах процент «продуцентов» метана самый высокий в мире – до 84 процентов. В Европе данный показатель варьирует от 25% до 62 процентов. В Азиатских странах (например, в Японии) он самый низкий – до 15 процентов.

Как мы сказали выше, авторы исследования помещают полученные результаты в климатический контекст. Благодаря исследованию, им удалось выявить долю «продуцентов» метана конкретно среди жителей Великобритании. Как утверждают исследователи, в возрастной группе до 30 лет она составляет 25 процентов. В возрастной группе людей старше 30 лет она доходит до 40 процентов. Это значительно меньше, чем в Африке, но все же больше, чем в азиатских странах. Соответственно, была установлена и примерная доля парниковых газов, выделяемых гражданами этой страны. Согласно предварительным оценкам, она должна составлять от 0,05% до 0,1% от общего объема выбросов, официально зарегистрированных на территории Великобритании. Величина не ахти какая, однако исследователи полагают, что не стоит преуменьшать ее значения.

Согласно общей логике подобных исследований, полученные данные определяют некие реперные точки, позволяющие оценить последующую динамику выбросов, исходящую от людей. Скажем, если лет через десять аналогичные замеры покажут, что процент «продуцентов» метана вырос, то динамика будет оценена как неблагоприятная, и наоборот. И мы вполне можем допустить, что в рамках проводимой в западных станах климатической политики рано или поздно будут предложены меры к «улучшению» этого показателя. Нет, мы не говорим о том, что «продуцентов» метана начнут целенаправленно истреблять. Скорее всего, здесь последуют очередные научные исследования, чтобы точно установить факторы, прямо влияющие на данный показатель. После чего на государственном уровне будут приняты какие-то решения. Какие точно, мы пока не знаем.

Как признаются исследователи, на данный момент еще не выявлены причины географических и этнических различий в выбросах метана. Также не до конца понятно влияние на данный показатель возраста, пола и диетических предпочтений. В общем, у ученых еще много работы.

Что самое характерное. Исследователи обращают внимание на то, что в их работе речь идет только о тех парниковых газах, которые выделяются при дыхании. Их доля в общем объеме всех выбросов кажется незначительной. Но не стоит забывать, отмечают ученые, что человек попутно выделяет газы из кишечника. При их учете величина «человеческих» выбросов заметно вырастет, однако до сих пор никто (во всяком случае, в Великобритании) не исследовал объемы парниковых газов, извергаемых людьми при вздутии живота.

В общем, перед европейскими учеными открывается весьма необычное поле исследований, продиктованных всё той же климатической политикой, в рамках которой, смеем предположить, выделяются гранты на подобную исследовательскую работу.

Константин Шабанов

Полимеры для сосудов

Исследователи из Новосибирского института органической химии им. Н. Н. Ворожцова СО РАН совместно с ООО «Медин» разрабатывают эмболизаты — полимеры, которые заполняют патологические сосудистые сплетения в сосудах. Полимер разрабатывается совместно с хирургами Национального медицинского исследовательского центра им. ак. Е. Н. Мешалкина.

«Мы сотрудничаем с нейрохирургами из клиники Мешалкина, именно они попросили нас помочь с рентгеноконтрастными эмболизатами. На рынке существует только два импортных аналога, и сейчас из-за санкций в России начался их дефицит, поэтому мы решили попробовать сделать свои», — рассказал научный сотрудник лаборатории фармакологических исследований НИОХ СО РАН, директор ООО «Медин» Аркадий Олегович Брызгалов.

Эмболизаты используют для предотвращения разрыва сосудов, купирования мальформаций (сгустков капиллярных патологических сосудов). Если мальформации находятся в голове, есть риск, что сосуды лопнут, это может привести к внутреннему кровоизлиянию и инсульту. Кроме того, опасны сосуды, в которых происходит отложение холестериновых бляшек, что увеличивает возможность остановки кровотока, приводит к его затруднению.

Наибольшую сложность вызывают операции, связанные с эмболизированием патологий кровеносных сосудов головного мозга. Эти операции проводят с использованием длинных катетеров, которые вводятся в бедренную вену и доходят до патологического разветвления в голове человека. Именно поэтому эмболизат, помимо хорошей контрастности, должен обладать достаточной текучестью и не слишком быстрой скоростью полимеризации.

Одни из самых важных показателей эмболизата — это вязкость и светимость. Вязкость подбирается под разный диаметр сосудов.

«Если раствор очень вязкий, его невозможно продавить в тонкий сосуд, он не пройдет туда. И наоборот, очень жидкий будет размываться по всему кровотоку. К тому же из-за густоты он может не дойти до конечной точки, так как длина катетера достигает 180 сантиметров», — пояснила старший научный сотрудник НИОХ СО РАН кандидат химических наук Инна Казимировна Шундрина.

Светимость нужна, чтобы хирург видел, как эмболизат проходит в сосуд и как он по нему двигается. Йод и тантал — два основных вида рентгеноконтрастов. Тантал — это тяжелый металл, он хорошо светится, но довольно токсичен. Один из импортных эмболизатов, Onyx, основан именно на нем. Помимо того, что тантал тяжелый и токсичный, у него сильные рентгеноконтрастные свойства. Из-за этого тонкие сосуды на экране получаются размытыми, поэтому его используют в основном для средних и крупных сосудов.

В составе второго импортного эмболизата, Phill, — йод. На его основе ученые и сделали свой эмболизат.

«Когда мы посмотрели состав импортного эмболизата, то оказалось, что там очень много примесей и всего ненужного. В нашем кроме полимера ничего нет, и даже свободного йода очень мало, он весь связанный», — добавил Аркадий Брызгалов.

Синтезом полимера занимались сотрудники лаборатории электрохимически активных соединений и материалов НИОХ СО РАН. Ученые проводили исследования на минипигах в лаборатории экспериментальной хирургии и морфологии Института экспериментальной биологии и медицины НМИЦ им. ак. Е. Н. Мешалкина. Для исследований применялись минипиги селекции ФИЦ «Институт цитологии и генетики СО РАН». Эти животные были выбраны благодаря диаметру сосудов, близкому к человеческому. В испытаниях участвовали эндоваскулярные хирурги и врачи-нейрохирурги, имеющие опыт селективной эмболизации сосудистых мальформаций головного мозга.

«У нас так устроена кровеносная система, что всегда есть обходные пути. Поэтому опасный сосуд можно перекрыть, кровь туда поступать не будет, а пойдет по другим сосудам. Эмболизация — один из самых удобных способов, так как у хирургов не всегда есть возможность провести операцию по удалению мальформаций. Они могут находиться в труднодоступных местах, быть очень маленького размера, или же у человека будут противопоказания к хирургическим вмешательствам», — пояснила Инна Шундрина.

Кроме того, таким способом можно купировать раковые опухоли. Для этого нужно заклеить сосуд, который снабжает опухоль кровью. В итоге она не будет получать питание, и ее рост и дальнейшее деление могут прекратиться.

Планируется, что уже через год ООО «Медин» приступит к выпуску эмболизатов. Помимо того, что отечественный препарат по составу более чистый, чем импортный, он будет гораздо дешевле.

«У нас сложилось идеальное сотрудничество производственной компании с институтом. И уже есть разработка, которая будет использоваться в клинике хирургами. Такое бывает редко, к сожалению», — прокомментировал Аркадий Брызгалов. 

Сейчас исследователи практически разработали конечный вариант эмболизата, он устроил всех хирургов. Как только ученые закончат эксперименты на минипигах, исследователей ждет последняя стадия, которая должна завершиться уже в 2024 году, — упаковка, проверка возможности препарата оказывать токсическое воздействие на организм человека и клинические испытания.

Полина Щербакова

Фото предоставлено исследователями

Нейросети, химеры, квантовый эффект Холла и Ватикан

На тридцатом новогоднем семинаре ученые Института физики полупроводников им. А.В. Ржанова СО РАН, Института цитологии и генетики СО РАН, Института ядерной физики им. Г.И. Будкера СО РАН, Института химической кинетики и горения им. В.В. Воеводского СО РАН рассказали о ярких достижениях мировой науки в ушедшем году.

Несколько докладчиков выбрали темой сообщений Нобелевские премии, кроме того слушатели узнали о способностях нейросетей, достижениях медиков и биологов в области трансплантации человеческих органов, химеризме, взрывных, в прямом смысле, полупроводниковых соединениях и прочих успехах научного мира.

Деятельность ИФП СО РАН в 2023 году охарактеризовал директор института академик РАН Александр Васильевич Латышев. Он отметил, что институт провел несколько крупных конференций, школ молодых ученых, выездное заседание Объединенного ученого совета СО РАН по нанотехнологиям, совещание «Синергия промышленности и науки» при участии мэрии Новосибирска, а на Общем собрании СО РАН были представлены результаты крупного научного проекта «Квантовые структуры для посткремниевой электроники», выполняемого несколькими НИИ и вузами под руководством ИФП СО РАН:

«В числе важнейших достижений присуждение премии им. А.Ф. Иоффе главному научному сотруднику ИФП СО РАН доктору наук Матвею Вульфовичу Энтину. Кроме того, деятельность ученых Института была отмечена почётными знаками и благодарностями Минобрнауки России и Российской академии наук».

Тысячекратный рост производительности суперкомпьютеров каждые 10 лет

Академик Александр Леонидович Асеев поделился примечательными событиями в области микроэлектроники, приведя ключевые тезисы из докладов президента РАН академика Г.Я. Красникова на форуме «Микроэлектроника» и общем собрании РАН: «Прогресс в области освоения нанометровых размеров транзисторов вместе с переходом к новым конструкциям транзисторов, новым технологиям их расположения, применении новых материалов и совершенствовании нанолитографических машин приведет к преодолению ограничений, накладываемых законом Мура. Произойдет многократное увеличение счетной мощности полупроводниковых микросхем. Ожидается тысячекратный рост производительности суперкомпьютеров каждые 10 лет до зеттафлопс в 2035 г».

Цитируя президента РАН, Александр Асеев добавил, что создание квантовых фотонных вычислителей не заменит классическую электронику и суперкомпьютеры, но сильно расширит их возможности. Во-первых, по производительности и защищенности вычислений при применении квантовых технологий, во-вторых в снижении энергетических затрат при применении фотонных технологий.

В новый год без Новой физики?

Заведующий лабораторией ИЯФ СО РАН академик РАН Александр Евгеньевич Бондарь рассказал о работе специалистов Института ядерной физики, ставящей под вопрос существование Новой физики, то есть частиц и явлений, не описываемых Стандартной моделью: «Измерение, сделанное в ИЯФ СО РАН и опубликованное в этом году, кардинально переворачивает всё представление о нашем понимании и знании вакуума и частиц, возможно, дающих вклад в аномальный магнитный момент мюона. Экспериментальное измерение величины аномального магнитного момента мюона блестяще согласуется с теоретическим расчетом, это говорит о том, что Новой физики мы пока похоже не видим».

Химеры среди нас, а не только в греческой мифологии: муравьи и люди

История, рассказанная заведующим лабораторией генетики развития ИЦиГ СО РАН кандидатом биологических наук Нариманом Рашитовичем Баттулиным, касалась неожиданного фундаментального противоречия в области биологии.

«Хочу поделиться с вами сильным впечатлением этого года: оно связано с химерами и базируется на статье в Science. В ней описаны уникальные организмы — желтые сумасшедшие муравьи. Уникальность в том, что их пол определяется не так, как у остальных муравьев, пчел. У желтых сумасшедших муравьев уже на стадии существования всего двух клеток наблюдается смесь разных геномов. Клетки начинают развиваться в муравья, но отдельные “части” сделаны из разных геномов — из материнского и из отцовского.

Заведующий лабораторией генетики развития ИЦиГ СО РАН кандидат биологических наук Нариман Рашитович Баттулин Это фундаментальное нарушение правил, потому что все многоклеточные организмы строятся из идентичных геномов — одна клетка делится, и в каждой клетке тела одинаковые геномы. Если этого не соблюдать, то клетки начнут друг с другом конкурировать, это приводит к очень неустойчивому состоянию. А желтые сумасшедшие муравьи каким-то образом преодолели фундаментальное противоречие», — пояснил ученый.

Он подчеркнул, что у людей тоже выявлен химеризм, такой случай описан в США. Результаты генетического теста, проведенные для матери и ее нескольких детей, демонстрировали отсутствие родственной связи. Даже в случае, когда генетический материал для теста был взят незамедлительно после родов, проходивших под контролем врачей.

«Среди людей тоже встречаются химеры — иногда близнецы в утробе матери “сливаются” и получается организм, состоящий наполовину из одних клеток (с одним геномом), а наполовину – из других. В случае с матерью в США ученые выяснили, что она — химера, и в результате были даже сделаны определенные законодательные поправки.

Я хочу всем пожелать почаще встречать в следующем году такие будоражащие воображение случаи и преодолевать даже самые сложные и неразрешимые противоречия», — заключил Нариман Баттулин.

Нобелевская премия завтрашнего дня

Старший научный сотрудник лаборатории нелинейных лазерных процессов и лазерной диагностики ИФП СО РАН кандидат физико-математических наук Илья Игоревич Бетеров представил свой прогноз о том, какие исследователи могут получить Нобелевскую премию в недалекой перспективе: «Это Михаил Лукин и Владан Вулетич. Они продемонстрировали точность получения квантовых перепутанных состояний, с ультрахолодными нейтральными атомами выше 99,5% в массиве из шести атомов — выдающееся достижение, открывающее возможности для создания квантовых процессоров на основе нейтральных атомов, которые могли бы конкурировать со сверхпроводящими и ионными процессорами.  Михаил Лукин — теоретик, он генерирует основные идеи, как сделать такие квантовые состояния, а команда Вулетича их воплощает экспериментально».

Среди российских ученых Илья отметил лауреата премии «Вызов», молодого сотрудника Физического института академии наук (ФИАН) Илью Семерикова: «Группа исследователей реализовала прототип квантового процессора с четырьмя кудитами или восемью кубитами на ионной платформе. Илье Семерикову 31 год, и он один из самых перспективных исследователей в этой области».

Криминалистика, краска для волос и гигантское комбинационное рассеяние света

О прикладной научной работе, имеющей важное значение для идентификации личности, рассказала младший научный сотрудник лаборатории ближнепольной оптической спектроскопии и наносенсорики Нина Николаевна Курусь.

 «Один из современных трендов в криминалистике — создание базы данных волос (как окрашенных, так и нет) людей разной этнической принадлежности, разного возраста и пола. Это необходимо, чтобы быстрое сканирование волос (в течение пары минут) позволяло определить потенциального обладателя волоса.

Была сделана исследовательская работа, в которой авторы попробовали дифференцировать признаки, которые отвечают за расовую принадлежность, возраст, пол и признаки, отвечающие за окрашивание. Затем авторы определяли не будут ли вышеперечисленные признаки мешать друг другу [при диагностике]. Исследование выполнялось методом гигантского комбинационного рассеяния света (ГКРС), для этого волосы помещались в раствор, содержащий золотые наночастицы».

В результате выяснилось, что методом ГКРС можно быстро выполнить анализ волос и установить этническую и половую принадлежность человека, его возраст, наличие в волосах красящего состава, тип последнего и даже марку. Присутствие красящего состава на волосах не искажает результаты определения.

«Авторы статьи оптимистично смотрят на перспективы метода гигантского комбинационного развития света, как альтернативы методам секвенирования  ДНК в криминалистике», — подытожила Нина Курусь.

Ватикан благословил квантовую механику (наконец!)

Заведующий лабораторией физики низкоразмерных электронных систем ИФП СО РАН член-корреспондент РАН Дмитрий Харитонович Квон напомнил участникам новогоднего семинара, что, по его мнению, самое выдающееся открытие второй половины двадцатого века — квантовый эффект Холла. Эффект был открыт Клаусом фон Клитцингом в 1980 г, а в 1985 году ученый получил Нобелевскую премию.

«В этом году летом, на конференции по двумерным материалам Клаус фон Клитцинг рассказал, что к нему обратился Ватикан (Папская академия наук) с просьбой рассказать о квантовом эффекте Холла. Вот такое благословение», — поделился Д.Х. Квон и процитировал стих Александра Блока, написанный в 1911 году:

…Ты все благословишь тогда,
Поняв, что жизнь — безмерно боле,
Чем quantum satis Бранда воли,
А мир — прекрасен, как всегда
.

Два человека и пришелец

Доктор физико-математических наук Вадим Михайлович Ковалев, заведующий лабораторией теоретической физики ИФП СО РАН рассказал об ученых, чьими достижениями он восхищен, и о космическом пришельце.

«Мы поздравляем сотрудника нашей лаборатории Матвея Вульфовича Энтина ―  лауреата премии им. А.Ф. Иоффе, которая была присуждена за цикл работ “Теория фотогальванического эффекта в средах без центра инверсии”. Это не один эффект, а большое направление, внутри которого существует множество разных механизмов и эффектов. Но неисчерпаемость фотогальванического эффекта в том, что он вышел даже за рамки полупроводниковых материалов, недавно мы показали, что он может существовать в сверхпроводниках».

Второй ученый, о котором упомянул Вадим Ковалев: Алексей Старобинцев, физик-теоретик, один из основоположников теории ранней Вселенной с де-ситтеровской (инфляционной) стадией.

«Известный факт: черные дыры излучают и испаряются, и открытие этого факта почему-то все приписывают Стивену Хокингу. На самом деле, об этом Хокингу (когда тот был в Москве) сообщил А. Старобинский, он как раз окончил университет и вместе со своим научным руководителем Я. Б. Зельдовичем убедил Хокинга, что в соответствии с принципом неопределённости квантовой механики вращающиеся чёрные дыры должны порождать и излучать частицы».

Космический пришелец 2023 года по версии Вадима Ковалева ―  субатомная частица «Аматэрасу» с огромной энергией: «244 квинтиллиона (десять в восемнадцатой степени)  электрон-вольт: в тридцать миллионов раз большая энергия у аматэрасу, чем у частиц на Большом адронном коллайдере. Аматэрасу обнаружили с помощью телескопа “Array” участники международного проекта, включающего группы  исследовательских и  образовательных учреждений Японии, США, России, Южной Кореи и Бельгии»,  ―  добавил исследователь.

Взрывоопасные полупроводники

О новых полупроводниковых материалах 2023 года слушатели узнали от заведующего лабораторией физических основ материаловедения кремния ИФП СО РАН доктора физико-математических наук Владимира Павловича Попова. Один из них ― нитрид углерода, с уникальными свойствами, теоретики предсказывали его твердость даже выше, чем у алмаза. Но вырастить его не так легко. «Большая команда европейских исследователей (где много бывших россиян) все же вырастили нитрид углерода, получив сразу четыре его фазы, включая тетрагональную и гексагональную. Для этого использовали обычные алмазные наковальни, в которых с помощью нагрева лазером создавалась температура свыше двухсот градусов, а давление достигало от 130 до 80 гигапаскалей. Когда давление и температуру снижали, полученные соединения оставались стабильными при обычных условиях».

Выяснилось, что выращенный таким образом нитрид углерода действительно близок по твердости к алмазу, и кроме того: «Нитрид углерода относится к классу энергоэффективных материалов, он превосходит тринитротолуол и гексаген, поэтому с ним надо работать с очень большой осторожностью. Не ударяйте молотком по новым полупроводниковым материалам!», ―  предостерег В. Попов.

Органы свиньи   ―  для пересадки человеку

Татьяна Александровна Шнайдер, научный сотрудник ИЦиГ СО РАН, подводя итоги года, рассказала о ксенотрансплантации: межвидовой пересадке органов, тканей и клеток: «Пересадка органов от животного к человеку никогда не заканчивались успехом, наша иммунная система не воспринимает чужой орган. Так происходит потому что на поверхности всех наших клеток ―  большое количество разных молекул, часть из них отвечают за рекогносцировку, в результате иммунная система распознает: свой или чужой.  Одна из ключевых молекул: альфа-гал (α-Gal), она есть у всех млекопитающих, кроме человека. Считается, что именно альфа-гал вызывает сильнейшее иммунное отторжение».

Ученые давно пытались обойти эту проблему, и реализовали две концепции. Первая состоит в том, что в теле животного выращивается орган, полностью состоящий из клеток человека, чтобы в органе не было молекул альфа-гал и он стал безопасным для пациента.

“Филигранная работа: ученые научились выращивать в эмбрионах свиньи почки, состоящие из клеток человека», ―  пояснила Т. Шнайдер.

Второй способ   ―  использовать генетически модифицированных животных.

«Можно модифицировать геном свиньи, чтобы она стала безопасна для пересадки органов. С помощью специальных молекулярных методов удалить ген, отвечающий за синтез альфа-гал и создать GalSafe свиней. Такую вещь сделали многие научные группы, но одна — “Revivicor” оказалась на шаг впереди и внесла еще десять модификаций, обеспечив максимальную безопасность свиней для человека», ―  продолжила историю исследовательница. 

Операция по пересадке органа от свиньи к человеку действительно была проведена   ―  для американского пациента, находящегося в терминальной стадии заболевания.

«Ему предложили так называемую терапию милосердия, по сути эксперимент, на который пациент и его семья дали согласие, и было получено разрешение от FDA. Чтобы столь быстро получить разрешение от FDA, исследователи ранее потратили несколько десятилетий. Свиньи GalSafe компании Revivicor были зарегистрированы, в первую очередь, как продукт питания для людей с аллергией на альфа-гал, после многолетних безуспешных попыток получить разрешение от FDA на терапевтический препарат. И уже к этому разрешению (на продукт питания) было сделано дополнение FDA о том, что можно использовать свиней GalSafe, как источник потенциального терапевтического применения. О том, что людей с аллергией на альфа-гал очень много и о причинах аллергии, ученые узнали из подкаста о науке “Radiolab”.

Пациент после операции прожил полтора месяца ―  не так много, но для умирающего человека ―  бесценная возможность провести время с семьей и близкими, напоследок сыграть в карты с любимой женой», ―  завершила рассказ Татьяна Шнайдер.

Chat GPT

Главный научный сотрудник лаборатории теоретической физики ИФП СО РАН доктор физико-математических наук Матвей Вульфович Энтин среди научных достижений 2023 года назвал работы Ливерморской лаборатории США по развитию термоядерного синтеза и появление нейросети Chat GPT. Ливерморская лаборатория продолжает воспроизводить прошлогодний положительный результат, когда в результате термоядерной реакции выделилось больше энергии, чем было потрачено на разогрев топлива.

Рассказывая про Chat GPT, Матвей Энтин показал примеры текстов, написанных нейросетью, среди которых была даже научная статья. Ученый добавил, что дал задание Chat GPT объяснить, что такое топологические изоляторы: «Получился очень хороший текст. На мой взгляд, он может служить введением в научную статью. Также я попросил нейросеть решить конкретную задачу, связанную с краевыми состояниями топологического изолятора. Однако, она ответила, что пока не может этого сделать».

Текст и фото предоставлены пресс-службой ИФП СО РАН 

Космические миссии 2023 года

В 2023 году стартовало несколько больших космических программ: зонды отправились к лунам Юпитера и астероиду Психея, два космических телескопа – к точкам Лагранжа, а четыре аппарата пытались сесть на Луну. Орбитальные же запуски побили рекорд.

Дальние миссии

14 апреля Европейским космическим агентством (ESA) запущена межпланетная станция JUICE (Jupiter Icy Moons Explorer), которая позволит более подробно изучить Юпитер и его ледяные луны: Ганимед, Каллисто и Европу, а также поискать там жизнь. Считается, что под ледяной поверхностью этих лун находятся значительные объёмы жидкой воды, что делает их потенциально обитаемой средой.

Аппарат достигнет Юпитера в 2031 году. Путь к Юпитеру будет непростым. Чтобы выйти на нужную траекторию, аппарат совершит несколько гравитационных манёвров: в августе 2024 года – облёт системы Земля–Луна, в августе 2025 года – Венеры, в сентябре 2026 года – второй облёт Земли и в январе 2029 года – третий и последний облёт Земли. В декабре 2034 года JUICE выйдет на орбиту Ганимеда для его детального исследования. Когда космический корабль израсходует оставшееся топливо, в конце 2035 года его планируется спустить с орбиты и ударить по Ганимеду.

 1 июля Европейским космическим агентством запущен космический телескоп Euclid («Евклид»). Уже через месяц он достиг пункта назначения – гало-орбиты вокруг второй точки Лагранжа L2 на среднем расстоянии 1,5 миллиона километров от орбиты Земли, присоединившись к космическим телескопам «Гайя» и «Джеймс Уэбб». В течении шести лет он будет измерять формы галактик на разных расстояниях от Земли и исследовать взаимосвязь между расстоянием и красным смещением, пытаясь лучше понять тёмную энергию и тёмную материю. На нём установлены инструменты, работающие в оптическом и инфракрасном диапазонах. 7 ноября 2023 года ESA представило первые полноцветные изображения космоса, сделанные «Евклидом».

Приборы «Евклида» будут сканировать в общей сложности около 35% неба. На остальной части неба преобладает высокая плотность ярких звёзд в нашей галактике и пыль в плоскости нашей Солнечной системы, которые мешают космологическим наблюдениям.

2 сентября Индийская организация космических исследований (ISRO) запустила коронографический космический аппарат для изучения солнечной атмосферы Адитья-L1 («Солнце» на санскрите). Это первая индийская миссия, посвящённая наблюдению за Солнцем. Аппарат будет вращаться на высоте около 1,5 миллионов километров от Земли по гало-орбите вокруг точки Лагранжа L1 между Землёй и Солнцем, где будет изучать солнечную атмосферу, солнечные магнитные бури и их влияние на окружающую среду вокруг Земли. Предполагается, что он достигнет назначенной орбиты в точке L1 6 января 2024 года.

13 октября NASA запустило миссию Psyche («Психея») для посещения большого металлического астероида (16) «Психея», к которому зонд подойдёт в 2029 году. Это первый случай посылки аппарата к металлическому астероиду. Космический корабль не приземлится на астероид, а будет вращаться вокруг него с августа 2029 года до конца 2031 года. Астероид (16) Психея – самый большой и массивный из известных астероидов М-типа (с высоким содержание металлов) со средним диаметром 220 километров. Он содержит около одного процента массы пояса астероидов. Радиолокационные наблюдения с Земли указывают на его железо-никелевый состав.

Одна из задач зонда – изучение происхождения планетных ядер, поскольку существует гипотеза, что (16) Психея может быть обнажённым железным ядром протопланеты, остатком сильного столкновения с другим объектом, который лишил её мантии и коры.

«Психея» для движения и орбитального маневрирования применяет двигатели на эффекте Холла – ионные двигатели, в которых частицы ускоряются электрическим полем, став первым межпланетным космическим кораблём, использующим эту технологию. Двигатели работают на солнечной энергии. Это также первая миссия, использующая лазерную оптическую связь за пределами системы Земля–Луна.

 Исследование Луны

В 2023 году было предпринято сразу четыре попытки посадить спускаемый аппарат на Луну.

14 июля ISRO запустила свою третью лунную миссию Chandrayaan-3 («Чандраян-3» – «Лунный корабль» на хинди). Она включала посадочный модуль и луноход «Прагьян». Спускаемый аппарат успешно приземлился в районе южного полюса Луны 23 августа, что сделало Индию четвёртой страной после СССР, США и Китая, успешно высадившейся на Луну, и первой, сделавшей это вблизи южного полюса Луны.

Луноход и спускаемый аппарат не имели систем обогрева, поэтому их основные научные программы были рассчитаны лишь на один лунный день (14 земных дней). 3 сентября луноход был переведён в спящий режим, поскольку бортовая электроника не была рассчитана на то, чтобы выдерживать ночные температуры на Луне (–120° C). Если бы она перенесла холод лунной ночи, то возобновления работы аппарата следовало ожидать 22 сентября, когда его вновь осветило Солнце. Однако восстановить связь не удалось. В конце декабря стало известно, что индийские учёные прекращают попытки активировать луноход. Несмотря на короткий срок работы, луноходу, который прошёл по Луне около 100 метров, удалось получить много интересных результатов. В частности, он впервые «на месте» обнаружил на ней серу. Неожиданным стал результат измерения температуры поверхности, которая составила около +70°C (вместо ожидавшихся +20–30 °C). На глубине 8 см температура примерно на 60°C ниже.

Индийские специалисты провели ещё один интересный эксперимент. Орбитальный модуль впервые был переведён с лунной орбиты на околоземную. Это может оказаться полезным в будущем для доставки на Землю образцов лунного грунта.

6 сентября Японское агентство аэрокосмических исследований (JAXA) запустило рентгеновский космический телескоп XRISM (Миссия рентгеновской визуализации и спектроскопии) и лунный посадочный модуль SLIM (Smart Lander for Investigating Moon – Умный посадочный модуль для исследования Луны). XRISM был успешно выведен на орбиту в тот же день, а лунный модуль вышел на орбиту вокруг Луны 25 декабря 2023 года и, как ожидается, приземлится 19 января 2024 года. SLIM – это первая японская миссия на поверхность Луны, цель которой – продемонстрировать точную посадку на Луну. Если она окажется успешной, Япония станет пятой страной, совершившей мягкую посадку на поверхность Луны.

25 апреля посадку на Луну неудачно пытался осуществить Hakuto-R Mission 1 – частный японский космический корабль, нёсший первую миссию на Луну Объединённых Арабских Эмиратов. Связь с посадочным модулем была потеряна на последних секундах спуска. На нём находились луноход «Рашид» (ОАЭ) и японский трансформируемый лунный робот SORA-Q компании Tomy и JAXA.

11 августа по московскому времени был запущен российский космический аппарат «Луна-25». Это была первая попытка в нашей стране посадить космический корабль на Луну, после советского спускаемого аппарата «Луна-24» (1976 год). Одной из задач «Луны-25» был поиск воды на спутнике Земли. Однако 19 августа спускаемый модуль разбился при посадке. 3 октября глава «Роскосмоса» Ю. Борисов сообщил СМИ, что аварийная комиссия установила, что наиболее вероятной причиной аварии стала программная ошибка, в результате которой в бортовой комплекс управления не приходили сигналы с акселерометров. Это не позволило своевременно выключить двигатели. «Луна-25» рассматривалась в определённой степени как прототип, для того чтобы заново научиться садиться на Луну. Так что будем надеяться, что полученный опыт позволит успешно выполнить следующие лунные миссии

Несмотря на катастрофу «Луна-25» успела получить некоторые научные данные, в том числе фотографировала один из самых глубоких лунных кратеров южного полушария Луны – Зееман (Подробнее см.: Наука и жизнь № 12, 2023, «Снимки, сделанные «Луной-25», озадачили планетологов»).

Орбитальные запуски

Третий год подряд земная космонавтика устанавливает новые мировые рекорды как по попыткам запуска на орбиту (223), так и по успешным орбитальным запускам (211) за год. В этом году побит даже мировой рекорд по количеству запусков одной страной (108), установленный Советским Союзом в далёком 1982 году.

Очищается сама

Ученые НГУ запатентовали композицию для создания фотоактивного покрытия на поверхности тканевых материалов путем пропитки специальным составом. Такое покрытие позволяет разрушать химические вещества, а также макромолекулы, включая ДНК и РНК, и инактивировать вирусы и бактерии, попадающие на поверхность ткани. Такую ткань можно будет использовать для пошива рабочей одежды медицинских работников, сотрудников лабораторий, пищевых производств. Самоочищающиеся ткани будут обладать более высокой сохранностью и функциональностью в условиях влажного теплого климата, поскольку они в меньшей степени подвержены воздействию сырости, вредоносных грибков и бактерий.

— При обработке тканей используется специальный катализатор на основе двуокиси титана. При воздействии света на его поверхности образуются активные окисляющие частицы, и любые органические вещества при взаимодействии с ними разлагаются до углекислого газа и воды, а микроорганизмы и вирусы инактивируются. Таким образом ткань самоочищается. Ранее подобные фотокатализаторы активировались за счет ультрафиолетового излучения и были малоактивны при видимом свете, однако старший научный сотрудник нашего Центра Дмитрий Селищев в рамках работы над своей докторской диссертацией разработал составы, способные работать при видимом свете, даже под лампами дневного освещения в помещениях и под воздействием солнечного света, — так же эффективно, как и при воздействии ультрафиолета. Это очень важно, потому что ультрафиолетовые лампы невозможно использовать в помещениях в постоянном формате в виду их неблагоприятного воздействия на организм человека, — рассказал директор Научно-образовательного центра Института химических технологий (ИНХИТ) НГУ, доктор химических наук Денис Козлов.

Разработкой ученых Института химических технологий НГУ заинтересовалось московское предприятие — ООО «Завод «Аэролайф». Их заинтересовало именно производство самоочищающихся тканей, потому что пропиточный состав с фотокатализатором наносится на ткань равномерно и в оптимальной концентрации, а технология пошива одежды из самоочищающейся ткани проще и дешевле, чем пошив и последующая обработка готового изделия.

Состав фотокатализатора варьируется в зависимости от поставленных задач. Учитывается место применения (в помещении или на открытом воздухе, при нормальной или повышенной влажности) и специфика условий работы (медицинское учреждение, лаборатория, пищевое производство и др.).

Высокий уровень обеззараживающих свойств самоочищающихся тканей был подтвержден многочисленными испытаниями в лабораторных условиях. Помимо этого, пропитки испытывали на устойчивость. Обработанные ими ткани подвергли многократной стирке, и после этого самоочищающаяся способность ткани сохранялась.

— Сейчас, когда возможность многократного использования самоочищающихся тканей подтверждена, мы с индустриальным партнером приступили к подготовительному этапу внедрения нашей разработки в производство. Совершенствуется технология производства, отрабатываются режимы обработки материалов, формируется перечень оборудования, которое необходимо закупить. Мы не сомневаемся, что наша разработка будет востребована на рынке, — сказал Денис Козлов.

Пресс-служба Новосибирского государственного университета

 

Горячая научная дюжина 2023

Новый год к нам мчится и наступило время публиковать наш рейтинг «Горячая научная дюжина событий» по версии сайта «Академгородок». Как обычно, мы не претендуем на то, чтобы в одном списке (из всего-то дюжины позиций) вместить всё по-настоящему значительное. Поэтому применяем еще один критерий – мы выбираем только из тех тем, что были освещены на нашем ресурсе.

1. Многие прорывные результаты связаны с развитием нанотехнологий. Ученые Института цитологии и генетики СО РАН выяснили, как наночастицы попадают из носа в мозг, как они там распространяются и как можно управлять этим процессом. А самое главное – как можно извлекать из этого пользу для человека. Например, внедрить в голову нанороботов, которые будут бороться с болезнью Паркинсона.

2. Еще одна бурно развивающаяся технология – беспилотный транспорт. И наш ресурс не остался в стороне от этой темы. Летом в Новосибирске прошел всероссийский «Архипелаг», посвященный этой теме и главной его площадкой стал Новосибирский государственный университет. А несколькими месяцами ранее мы рассказали, как другой вуз города – НГТУ – презентовал открытие центра компетенций по беспилотникам.

3. Как обычно активным ньюсмейкером выступал ЦКП СКИФ, строительство которого с каждым днем близится к финалу. В течение года мы рассказывали об изготовлении ключевых блоков будущего синхротрона, значительную часть которых сделали в Институте ядерной физики СО РАН. Не остались в стороне и другие институты, так в Институте геологии и минералогии изготовили алмазные окна для фронтендов установки. А летом строители приглашали СМИ на торжественную заливку фундамента его корпусов.

Важная стройка Академгородка, которую мы отмечаем в нашем рейтинге – это, конечно же, новый кампус Новосибирского государственного университета 4. Еще одна важная стройка Академгородка, которую мы отмечаем в нашем рейтинге – это, конечно же, новый кампус Новосибирского государственного университета. Там тоже дела продвигаются активно. Первая очередь кампуса готова уже более, чем наполовину, да и часть объектов второй очереди уже возвышается над землей на несколько этажей. Напомним, ФМШ должна отпраздновать новоселье уже ближайшим летом, а полностью строительство будет завершено в 2025 году.

5. Сразу несколько значительных результатов были получены нашими учеными в области сельского хозяйства. Так исследователи из ИЦиГ СО РАН нашли новые гены-кандидаты, связанные с признаками мясной продуктивности овец. А их коллеги из Курчатовского геномного центра института изучили, какие гены влияют на концентрацию семи различных химических элементов в зерне российских сортов пшеницы: кальция, калия, марганца, магния, цинка, железа и меди.

6. Но самой «горячей» новостью этого направления стало сообщение о начале промышленного использования новой для нашей страны сельскохозяйственной культуры – мискантуса. Про мискантус Сорановский писали как отечественные, так и зарубежные СМИ. Мы же скромно отметим, что на протяжении ряда лет наш сайт отслеживает весь путь этого растения от селекционных участков до промышленных плантаций.

7. В уходящем году в Академгородке прошло сразу несколько интереснейших мероприятий. Одно из них – конгресс, посвященный технологиям редактирования генома CRISPR 2023, одним из главных организаторов которого выступил Институт цитологии и генетики СО РАН. За последние пять лет в этом направлении произошел бурный прогресс, причем, и в плане внедрения. Только в 2020 году за открытие метода «генетических ножниц» была вручена Нобелевская премия, а уже в этом году зарегистрировано первое лекарство, созданное с ее помощью.

8. Еще больше о практическом внедрении разработок новосибирских ученых говорили на форуме «Золотая Долина», который организовал НГУ. Его участники не раз подчеркивали, что это первое такое мероприятие в истории Академгородка и выражали надежду на то, что оно не станет последним.

На форуме «Технопром» каждый год ученые и инноваторы показывают что-то новое и интересное 9. Еще одно мероприятие, которое мы хотим упомянуть в рейтинге, хоть и проходило не в Академгородке, а в Экспоцентре, традиционно является важным для сибирской науки. Конечно же, это форум «Технопром», на котором каждый год ученые и инноваторы показывают что-то новое и интересное. Например, в этом году много говорили о высоких технологиях здравоохранения. А также о тенденциях атомной энергетики, агропромышленном суверенитете. И о много чем еще. А представители государства так же традиционно сообщают об изменениях в научно-технологической политике власти.

10. Как обычно, немало интересного произошло в области информационных технологий. Так, в этом году в ИЦиГ СО РАН создали «поисковик для ученых» - пакет программ для автоматического извлечения информации из научных текстов. А специалисты из Центра смарт-технологий и искусственного интеллекта НГУ разработали голосового помощника для управления системами «умного дома». Причем в отличие от «Алисы» от Яндекс для его использования не надо покупать дорогостоящую «умную колонку».

11. В этом году произошло заметное усиление роли, которую ученые Академгородка играют в развитии отечественной космонавтики. Так, НГУ стал головным исполнителем в новых больших проектах Роскосмоса по расширению нашей спутниковой группировки. Впрочем, на нашей земле рождаются не только современные малые спутники, но и космонавты, одна из них – Анна Кикина этим летом приезжала в Новосибирск и выступая перед подрастающим поколением в Академгородке еще раз напомнила всем, что мечтать о звездах – полезно.

12. И завершит наш рейтинг новость, связанная с одним из самых необычных памятников Новосибирска – «Мышью, вяжущей ДНК». Ведь этим летом она отпраздновала свой десятилетний юбилей. За эти годы памятник стал одной из «визитных карточек» Академа и в любое время года к нему не зарастает «народная тропа». Автор памятника – новосибирский художник Андрей Харкевич так описывает то, что хотел выразить в своем произведении: «Здесь сочетается и образ лабораторной мыши, и ученого, потому что они связаны между собой и служат одному делу. Мышь запечатлена в момент научного открытия. Если всмотреться в её взгляд, можно увидеть, что эта мышка уже что-то придумала. Но вся симфония научного открытия, радость, «эврика!» ещё не зазвучали».

НГУ станет центром по ИскИну

В правительстве РФ подвели итоги конкурса на получение финансирования для создания ряда исследовательских центров в сфере искусственного интеллекта. В число шести победителей вошел Новосибирский государственный университет. Согласно условиям конкурса, каждый центр будет иметь четкую отраслевую направленность, НГУ остановил выбор на направлении «Строительство и городская среда («умный город»)».

«Почему мы решили сосредоточиться на теме «умного города»? Во-первых, сейчас строится новый кампус университета по программе кампусов международного уровня, а значит там будут не только новые здания, но и новые технологии. Кроме того, строительная отрасль в Новосибирске является одной из наиболее активных. Там жесткая конкуренция и отличная среда для внедрения высокотехнологичный решений», — объяснил выбор тематики директор Высшего колледжа информатики НГУ Алексей Окунев.

Условия конкурса предусматривают совместное финансирование работы центра государством и индустриальными партнерами университета (известно, что участие в проекте будут принимать Сбер, Ростелеком, Сибирская генерирующая компания и еще целый ряд предприятий и организаций), общая сумма финансирования за три года превысит 900 млн рублей.

«Это очень важный результат для университета, открытие центра даст мощный импульс развитию в НГУ очень востребованного сегодня направления – технологий искусственного интеллекта. Причем, речь идет как о большой исследовательской программе в интересах наших партнеров, так и в развитии образовательного процесса, подготовки кадров для работы с подобными технологиями», — подчеркнул в беседе с корреспондентом «Континента Сибирь» директор Центра взаимодействия с органами власти и индустриальными партнерами НГУ Александр Люлько.

Он также отметил, что, хотя официально центр откроется только со следующего года, организационная и исследовательская работа в его рамках уже началась.

В числе других победителей конкурса — Национальный исследовательский ядерный университет «МИФИ», Санкт-Петербургский государственный университет и Нижегородский государственный университет им. Н.И. Лобачевского.

Мировой рекорд в Дубне

Основной принцип экспериментов в физике высоких энергий – чем больше плотность частиц, тем выше качество исследования. Эксперименты могут проходить в колладйере, где пучки частиц соударяются друг с другом, а также в результате столкновения со статичной мишенью. Но в обоих случаях эффективность зависит от плотности потока ионов: чем сильнее сжаты пучки, тем больше физики наберут статистических данных. И поскольку еще из школьной программы мы знаем, что температура тесно связана с расширением объекта, то и сжатие пучка завязано на его охлаждение.

«Например, рекордный эмитенс, которые предполагается получить в СКИФе – это и есть хорошо охлажденный пучок», - пояснил заместитель директора Института ядерной физики СО РАН по научной работе Евгений Левичев.

Для ускорителей, которые работают с пучками из легких частиц, механизмом охлаждения выступает само синхротронное излучение, а вот для тяжелых частиц (к которым относятся ионы) такого механизма в природе нет. Их приходится создавать. Первый предложили в ЦЕРН – это метод стохастического охлаждения, за изобретение которого была вручена Нобелевская премия.

Второй метод – электронного охлаждения - придумал еще в прошлом веке основатель и первый директор Института ядерной физики, академик Г.И. Будкер. Он предполагает, что к горячему. Рыхлому пучку ионов добавляют пучок охлажденных электронов, которые двигаются с той же скоростью. В результате, электроны, нагреваясь – охлаждают ионы, обеспечивая необходимое сжатие пучка.

«Электронные системы охлаждения открыли настолько широкие перспективы, что в настоящее время ионные накопители без них практически не используются», – подчеркнул Левичев.

Однако речь в данном случае идет о зарубежных научных центрах. В Российской Федерации электронное охлаждение в ядернофизическом эксперименте использовалось впервые в эксперименте BARIONIC MATTER @ NECLOTRON, в результате совместной работе специалистов Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) и Объединенного института ядерных исследований (ОИЯИ).

Этот эксперимент стал частью проекта тяжелоионного коллайдера NICA в ОИЯИ (Дубна), где предполагается изучение взаимодействия заряженных частиц в области низких и средних энергий, важные для понимания их внутренней структуры. NICA будет предназначена для изучения ионной материи в сверхэкстремальном состоянии, которое было характерно для материи в самые первые пикосекунды после Большого взрыва, а сейчас встречается, разве что, внутри нейтронных звезд.

«Метод электронного охлаждения позволяет в тысячи раз уменьшить фазовые объемы охлаждаемых пучков. Для этого холодные электроны направляются магнитным полем из электронной пушки в кольцо ускорителя, в случае эксперимента в Дубне, это сверхпроводящий бустерный синхротрон. Здесь они соединяются с горячими ионами, некоторое время движутся по кольцу вместе и за счет столкновений охлаждают ионы», – рассказал Евгений Левичев.

В сеансе 2023 г. на накопительном тяжелоионном комплексе ОИЯИ в составе синхротронных колец «Бустер» и «Нуклотрон» было получено первое в России электронное охлаждение тяжелых ионов, которое было использовано для повышения эффективности работы исследовательской установки Baryonic Matter at Nuclotron (BM@N).

«Проведен широкий цикл прикладных исследований по программе коллаборации ARIADNA (Applied Research Infrastructure for Advance Development at NICA fAcility), – пояснил исполняющий обязанности директора Лаборатории физики высоких энергий им. В. И. Векслера и А. М. Балдина ОИЯИ Андрей Бутенко. – Последовательно исследовались защитные свойства, радиационная стойкость и радиомодификация новых композитных материалов для космической отрасли, радиационные модификации в сапфирах (Al2O3), политерафторэтиленовых, полиэтилентерефталатных, полиэтиленовых и полиимидных пленках. В рамках программы “PLANTS AND VEGETATION IN SPACE” облучены 16 контейнеров с семенами различных растений. Проводился активационный анализ материалов при облучении релятивистскими тяжелыми ионами.

Электронное охлаждение пучка тяжелых ионов, полученное совместными усилиями специалистов ИЯФ СО РАН и ОИЯИ, позволило увеличить вдвое скорость набора данных во время экспериментов по изучению плотной барионной материи на фиксированной мишени и получить новые интересные экспериментальные данные.

Запуск установки не просто стал первым опытом применения этого метода в России, он подтвердил, что ИЯФ СО РАН остается мировым лидером в этой области. «Хотя технология у всех систем одинаковая, для каждого отдельного проекта мы создаем уникальное оборудование. Наши установки работают в России, Китае и Европе, в том числе в ЦЕРН и ОИЯИ», - отметил главный научный сотрудник ИЯФ СО РАН академик РАН Василий Пархомчук.

Сергей Исаев

100-процентный результат

Сибирское отделение РАН выполнило государственное задание за 2023 год на 100 %. Об этом сообщил на последнем в году заседании Президиума СО РАН главный ученый секретарь Сибирского отделения член-корреспондент РАН Андрей Александрович Тулупов.

«Наш отчет будет подписан председателем СО РАН академиком Валентином Николаевичем Пармоном и направлен в РАН», — отметил А. Тулупов. В 2023 году работа Сибирского отделения РАН состоит из трех разделов государственного задания.

«Мы провели 19 российских научных конгрессов, конференций, симпозиумов, семинаров и других мероприятий. География обширная — это города на территории Сибирского макрорегиона плюс одна конференция прошла в Махачкале. Кроме того, с участием СО РАН были организованы и события международного уровня по самым разным тематикам», — рассказал Андрей Тулупов.

В 2023 году многие сибирские ученые были удостоены наград, которые вручаются Сибирским отделением РАН. «Двое наших коллег из Республики Беларусь стали почетными докторами СО РАН», — добавил А. Тулупов.

Большое внимание СО РАН уделяет популяризации науки: с участием управления по пропаганде и популяризации СО РАН прошли выездные научно-популярные лекции в школы Новосибирской области, организован крупный всероссийский форум по научным коммуникациям SciComm-2023, а также Новосибирск стал площадкой федеральной акции «Открытая лабораторная». «Выставочный центр СО РАН провел большую и активную работу. Кроме того, СО РАН участвует в глобальной выставке “Россия”, которая проходит на ВДНХ в Москве», — отметил А. Тулупов.

В 2023 году вышло в свет 32 научных журнала и было издано 18 монографий.

Еще одним пунктом в государственном задании Сибирского отделения РАН является проведение экспертиз по разным направлениям науки, а также аналитические материалы, включая предложения в доклады Академии наук, президенту РФ и Правительству РФ.

Завершая свой доклад, Андрей Тулупов сообщил, что в январе отчет по выполнению государственного задания будет представлен на заседании Президиума РАН в Москве.

"Умная" скважина

В последние годы бурное развитие получил так называемый «интернет вещей», в рамках которого окружающие нас устройства получают доступ в сеть и возможность самостоятельно собирать и обрабатывать данные с помощью различных датчиков. Эта технология уже стала привычной частью окружающего нас мира: кондиционер предупреждает вас, если дома слишком холодно, а дверь закроет себя сама, если вы вдруг забыли.

Но системы мониторинга на основе дешевых датчиков, способных передавать данные, могут намного больше, чем управлять устройствами «умного дома». Сотрудники Передовой инженерной школы Новосибирского государственного университета (ПИШ НГУ) занимают разработкой интеллектуальной программной платформы, которая будет решать ряд важных задач для нефтегазодобывающей отрасли страны.  

Выбор именно этой отрасли в качестве целевой был не случаен. «С одной стороны, НГУ в партнерстве с Институтом нефтегазовой геологии и геофизики СО РАН достаточно давно работают в области геологии и геофизики, в университете создан специальный научно-образовательный центр по этой тематике, в результате - есть хороший багаж прежних наработок, который мы активно используем. А с другой стороны, в ходе этих исследований налажены контакты с компаниями, что облегчило поиск индустриальных партнеров для этого проекта», - рассказал «Континенту Сибирь» старший научный сотрудник ПИШ НГУ, к.ф.-м.н. Антон Дучков.

Платформа будет представлять собой некий центр компетенций, основными элементами которого являются собственно датчики и программные средства, осуществляющие сбор данных и их анализ, а также приложение, которое позволит работать с платформой через телефоны и другие гаджеты.

Основным направлением работы платформы сейчас является мониторинг состояния объектов нефтегазовой инфраструктуры. Как известно, большинство разрабатываемых сейчас месторождений находится в районах вечной мерзлоты и все чаще возникает проблема нарушения состояния зданий и сооружений в связи с сезонным оттаиванием грунтов и глобальным потеплением.

Ученые НГУ с помощью технологий «интернета вещей» и искусственного интеллекта помогают оптимизировать добычу полезных ископаемых и предугадывать землетрясения Разработанная в НГУ технология экспресс-оценки состояния таких объектов уже стала победителем технологического конкурса «Арктек» в декабре этого года. Сейчас идет речь о дальнейшем совершенствовании технологий мониторинга, оптимально - построении массовой сети с облачным сервисом для хранения информации о техническом состоянии исследуемых зданий и конструкций. На его основе предполагается запустить сервис уведомлений, с помощью которого обслуживающие их организации будут оперативно получать информацию о наступлении опасных событий.

Вместе с тем, идет работа по второму направлению – мониторинг состояния самих месторождений. Ранее мы рассказывали о том, как студент ПИШ НГУ выиграл грант в 500 тысяч рублей на разработку программного обеспечения для сейсмического мониторинга изменений, которые происходят в геологической среде по мере разработки месторождений. Аналогичной суммой был поддержан другой студенческий проект – создание программного комплекса для мониторинга технического состояния нефтегазодобывающих скважин с помощью термометрии.

Обе разработки также являются частью проекта по созданию мониторинговой платформы. Впрочем, этим возможные задачи для неё не исчерпываются. «Добыча нефти и газа – это не только один из крупнейших мировых рынков, это очень большой хозяйственный комплекс, где есть масса направлений – геологоразведка, собственно добыча, капитальное строительство, логистика, материаловедение и многое другое. Соответственно, круг задач для мониторинга очень широк, а мы как раз стремимся к тому, чтобы наша платформа была универсальной и могла решать самые разные задачи. И в этом плане нефтегазовая отрасль – очень удобный полигон», - подчеркнул Антон Дучков.

К примеру, комплекс сейсмического мониторинга состояния скважин, способный отслеживать микросейсмические события, возникающие, к примеру, в ходе гидроразрыва в скважинах, после определенной модификации может выполнять роль системы раннего предупреждения колебаний земной коры в районах угледобычи и других сейсмоопасных регионах.

Еще одно перспективное направление связано с захоронением СО2 на тех объектах, откуда ранее добывали нефть и газ. Благодаря наличию готовой инфраструктуры, они являются удобными кандидатами для таких «карбоновых хранилищ». Очень важной их частью становится мониторинговая платформа, которая позволит контролировать их состояние, предотвращая риски утечек. Здесь у ПИШ НГУ тоже есть промышленный партнер, уже создан прототип программного обеспечения для такой системы, в настоящее время идет процесс согласований для перехода к его испытаниям.

Найдется работа для платформы и на столь популярных в последнее время карбоновых полигонах. Как известно, они создаются для того, чтобы изучения и оценки эффективности того или иного способа переработки СО2. И здесь тоже не обойтись без систем сбора данных и мониторинга ситуации. «Наши студенты делали проекты неких дешевых климатических станций в виде сеток из различных датчиков, которые гораздо проще и дешевле тиражировать, чем существующее метеорологическое оборудование, применяемое на таких полигонах сейчас», - отметил Антон Дучков.

Помимо универсальности, важной характеристикой платформы является ее способность решать довольно сложные задачи, в отличие от скажем систем контроля температуры в зданиях (которая также построена на основе датчиков, объединенных в сеть «интернета вещей»). Особенно ярко это проявляется в задачах мониторинга состояния месторождений.

Платформе необходимо в режиме реального времени обработать большие объемы различных типов данных, поступающих с датчиков, проанализировать полученную информацию и на ее основе построить модель реальной ситуации в глубине скважины, с которой потом можно будет работать. Добиться этого можно только с использованием систем искусственного интеллекта, которые активно используют ее разработчики.

Конечно, любые важные решения в управлении скважиной все равно останутся за человеком, но принимать их он будет, в том числе, на основе модели ситуации и прогнозов ее изменения, предоставленных нейросетью. Это позволит оптимизировать добычу на месторождении и снизит вероятность возникновения аварийных ситуаций.

Одновременно с разработкой программного обеспечения, сотрудники ПИШ НГУ в сотрудничестве с индустриальными партнерами немало времени уделяют совершенствованию самих датчиков. Один из примеров – интеграция датчиков и сенсоров в оптоволоконные системы, которыми с недавних пор стали оборудовать скважины месторождений. В отличие от классических методов, когда они крепились к зонду, периодически погружаемому на нужную глубину, это позволит получать необходимую информацию не в какие-то периоды, а постоянно. Первые шаги в этом направлении делались в рамках программы «Приоритет-2030», теперь полученные результаты развивают в ПИШ НГУ. «В области геологии и геофизики «Приоритет-2030» часто выступает начальной стадии проработки идеи, получение знаний, и если на этом этапе проявляется их инженерная перспектива, то работа переходит к нам. Потому что инженерная школа нацелена на продукт, нам нужно думать про коммерциализацию, окупаемость и прочее. Это разные уровни работы, но они плотно связаны друг с другом», - пояснил Антон Дучков.

Другая задача в области модернизации датчиков – повышение их чувствительности, чтобы отечественная продукция по этому показателю сравнялась с лучшими зарубежными аналогами.

Как отмечают в ПИШ, по мере развития технологий, число задач для совершенствования и импортозамещения аппаратной части платформы будет только расти. И в этом плане они рассчитывают, что существенно расширить приборостроительное направление удастся за счет нового университетского кампуса, возводимого в рамках нацпроекта «Наука и университеты».

На сегодня все основные элементы платформы (аппаратная часть, программное обеспечение и приложение для ПК и гаджетов) находятся в высокой степени готовности. Сейчас ученые переходят к этапу испытания прототипа платформы на полигонах своих индустриальных партнеров в зоне вечной мерзлоты. «Есть надежда, что уже через пару лет наш продукт начнет внедряться и на реальных инфраструктурных объектах, сначала – для мониторинга состояния поверхностных сооружений, но по мере работы задачи для платформы, как я говорил, будут расширяться», - подытожил Антон Дучков.

Страницы

Подписка на АКАДЕМГОРОДОК RSS