Нанометровая "линейка"


Новосибирские физики разработали нанометровую «линейку» на основе атомных ступеней для применения в современной электронной промышленности
26 июля 2023

Разработка ученых Института физики полупроводников им А.В. Ржанова СО РАН (ИФП СО РАН) — апробированные кремниевые меры высоты и плоскостности — востребована среди производителей высокоточной измерительной аппаратуры (в частности, атомно-силовых микроскопов), на предприятиях микро- и наноэлектроники, высокоточного машиностроения.

На сегодняшний день в России и мире — это единственный вид мер, охватывающий диапазон от сотых долей нанометра до десятков нанометров. Обычно для измерения объектов, размером в доли нанометра и десятки нанометров, используются разные масштабные «линейки», что  приводит к увеличению количества искажений и ошибок. Подробности работы опубликованы в журнале Американского химического общества «ACS Applied Materials & Interfaces».  (https://pubs.acs.org/doi/full/10.1021/acsami.2c20154)

«Отличие наших мер от тех, что широко используются сейчас — это прослеживаемость: мы можем одновременно измерить объекты, размеры которых доли нанометра и десятки нанометров. Наши меры перекрывают весь диапазон от 0,3 до 100 нм. Сейчас для измерения объектов в сотни нанометров используется одна “линейка”, а для единиц нанометров — другая. Это приводит к определённым сложностям: проводится компарирование (сличение) линеек, определяется масштаб неизбежно возникающих ошибок», — говорит заместитель директора по развитию ИФП СО РАН, первый автор статьи в «ACS Applied Materials & Interfaces» кандидат физико-математических наук Дмитрий Владимирович Щеглов.

Мера плоскостности представляет собой идеально гладкую поверхность кристалла кремния, диаметром до миллиметра, а мера высоты — «стопка» атомных слоев кремния, может варьировать от одного до нескольких сотен слоев. Высота одного атомного слоя  — 0,31356 нанометров. Такие масштабы сложно представить — это примерно в двести тысяч раз тоньше человеческого волоса.

С помощью новых мер можно проводить измерения объектов, размеры которых сопоставимы с атомными и даже меньше их — постоянно уменьшающихся элементов электронно-компонентой базы или квантовых наносистем, фрагментов молекул ДНК, структурных особенностей углеродных нанотрубок или каталитических наночастиц. Меры могут использоваться для усовершенствования и калибровки измерительного оборудования — оптических и атомно-силовых микроскопов, развития физических основ новой электроники.

«Для этих мер сотрудники Всероссийского научно-исследовательского института оптико-физических измерений (ВНИИОФИ) разработали паспорт и руководство по эксплуатации. Также были проведены экспериментальные исследования, показавшие, что меры соответствуют заявленным метрологическим характеристикам. Ранее, другой организацией, меры высоты были включены в Федеральный информационный фонд (ФИФ). Включение средства измерения в ФИФ позволяет использовать его в сферах государственного регулирования, а дополнительно — в качестве эталона определенного ранга в поверочной схеме, если он по своим характеристикам ему соответствует. За разработкой поверочной схемы нужно обращаться во Всероссийский научно-исследовательский институт метрологии им. Д. И. Менделеева, где хранится первичный эталон метра», — объясняет начальник отделения ВНИИОФИ доктор технических наук Владимир Леонидович Минаев.

Разработка подобных мер стала возможным благодаря использованию эффекта, открытого директором ИФП СО РАН академиком А.В. Латышевым в конце 1980-х годов — явления эшелонирования атомных ступеней под действием постоянного тока. После скола или отжига в вакууме поверхность любого кристалла не является идеально ровной в наномасштабе — визуально она напоминает террасные рисовые поля на склонах гор в юго-восточной Азии. На ней есть участки, состоящие из атомов плоскостей (террас), расположенные на различных высотах.  При этом минимальная разница высот таких плоскостей и будет равна одному атому, а граница между такими плоскостями и будет моноатомной ступенью.

Воздействуя на кристалл кремния постоянным током, можно «разогнать» ступени — и увеличить площадь гладкой поверхности или собрать нужное количество ступеней в более плотную «лестницу» — эшелон ступеней и, соответственно, точно определить его высоту.

«При создании наших мер, мы действуем по методу “снизу вверх” — используем фундаментальные физические свойства материи на атомном уровне, чтобы с помощью изменения макропараметров (приложенного поля, температуры и т.д.),  система сама превращалась в то, что нам нужно. Такой подход называется “использованием процессов самоорганизации”: мы ничего от макрообъекта не отрезаем, не используем химическое травление, литографию, как это происходит при создании большинства существующих сегодня мер методами “сверху вниз”.

Мы научились управлять поверхностью кристалла кремния фактически с атомной точностью и использовать кинетические нестабильности. Упрощенно говоря, управлять движением атомных ступеней, как потоком машин на дороге, собирая их в пробку или рассеивая, включив красный или зеленый светофор», —   добавляет Дмитрий Щеглов.

Принцип действия процессов самоорганизации ученый поясняет образно: «Представим, что стоит задача создать какой-то сложный объект: на завод привезли современный ноутбук и нужно создать такой же. Если создавать с помощью процесса “сверху вниз”  ―  нужно каждую деталь разобрать, понять, из чего она сделана, а затем выстроить технологии производства подобных деталей. А процесс “снизу вверх” работает иначе: понимая фундаментальные законы мироздания, разработчик делает преграду с заданным составом и рельефом, с необходимой энергией ударяет о нее, допустим, калькулятор, и тот превращается в ноутбук. Такая “волшебная” задача не всегда имеет решение (точнее,  — почти всегда не имеет), но иногда решение есть, для определенных систем, как в нашем случае».

Кто может использовать меры?

«В наших мерах заинтересованы производители атомно-силовых, оптических микроскопов, кроме того, мы сами ведем разработку специальных микроскопов нового типа, в рамках гранта Российского научного фонда № 19-72-30023. Меры могут применяться в оптических схемах, в том числе схемах квантовой передачи информации, использоваться там, где требуется высокоточная синхронизация систем на Земле и в космосе, как в GPS, GLONASS. Другой вариант — меры нужны в  научных экспериментах: атомно-гладкие поверхности мы передавали в Институт химической биологии и фундаментальной медицины СО РАН, ФИЦ “Институт катализа им. Г.К. Борескова”, как подложки для исследований. Такая поверхность может выступать одновременно и подложкой, и “линейкой” — и в этом тоже ее преимущество», — комментирует Д. Щеглов.

Владимир Минаев добавляет, что ему неизвестны другие комплексы мер, охватывающие диапазон от десятых долей нанометра до сотен нанометров: «Существуют меры компании VLSI (США) от 10 нанометров и более. Но менее 1 нм, я не встречал. В своей работе я рекомендую меры, созданные специалистами ИФП СО РАН, разработчикам и пользователям атомно-силовых, растровых электронных и интерференционных микроскопов, для которых важен субнанометровый диапазон, так как мер в этом диапазоне нет. Пока этот диапазон не очень востребован, насколько мне известно. Единственные, кто делает измерения в нем — изготовители лазерных зеркал. Для них очень важно получить шероховатость в ангстремном диапазоне (десятые доли нанометров).На текущий момент их приборы калибруются мерами высоты, имеющими размер десятки нанометров, думаю, что рано или поздно потребуются меры на меньший диапазон».

Сейчас атомно-гладкое зеркало, созданное в ИФП СО РАН, уже используется в уникальном приборе: интерференционном микроскопе, который разработан совместно специалистами ИФП СО РАН и Конструкторско-технологического института научного приборостроения СО РАН. Микроскоп позволяет вести быструю неразрушающую диагностику особенностей рельефа поверхности нанообъектов: регистрирует перепады высот порядка десятой доли нанометра. Обычно для подобных задач, решаемых при создании новых материалов, исследовательских процессах, промышленной диагностике, используется атомно-силовой микроскоп. Но, во-первых, игла атомно-силового микроскопа воздействует на поверхность, изменяя ее,  во-вторых, сканирование на атомно-силовом микроскопе длится в несколько раз дольше, чем исследование с помощью оптического прибора.

Во многом разработка — комплекс мер — опережает существующие технологии (не везде нужна такая точность измерений), и находится в начале индустриального применения. Ученые считают, что на данном этапе оптимально было бы создать прибор, который позволит использовать потенциал разработки по максимуму, что в итоге даст хороший эффект по отношению к существующим индустриям ― микроэлектронной отрасли, отрасли научного приборостроения, высокоточного приборостроения. «Если это (создание такого прибора) получится, то необходимо будет передавать для внедрения уже готовый  прибор, в основе которого лежат меры, а не сами меры отдельно»,  ― отмечает Дмитрий Щеглов.

Справка: В 2019 году  Международным бюро мер и весов в Париже было решено принять параметр кристаллической решетки кремния в качестве вторичной реализации определения метра. Первичный эталон метра определен, как расстояние, которое свет проходит в вакууме за 1/299792458 долю секунды.

Решение принять параметр кристаллической решетки кремния в качестве вторичной реализации определения метра, связано с растущей необходимостью проводить измерения в наномасштабе. Это требуется производителям интегральных схем, специалистам, занимающимся разработкой новых материалов, установлением фундаментальных закономерностей функционирования наномира, производителям высокоточного оборудования. Использование первичного эталона метра не позволяет проводить измерения объектов субнанометрового размера с нужной точностью из-за физических ограничений.

Соответственно, для использования параметра кристаллической решетки кремния, как вторичного эталона метра, необходимо создать комплект «линеек» — мер, использующих этот параметр. Один из способов, которым это можно сделать, рекомендованный Международным бюро — использовать моноатомные ступени кремния, именно такой комплекс мер создали ученые ИФП СО РАН.

Пресс-служба ИФП СО РАН

Фотографии предоставлены исследователями