Иммунный беспредел

Джеймс Эллисон и Таску Хондзё, лауреаты Нобелевской премии по физиологии и медицине 2018 года, независимо друг от друга открыли два похожих механизма, подавляющих активность иммунных клеток. Сейчас на их основе существуют шесть одобренных противоопухолевых препаратов: они «ломают тормоза» в клетках иммунитета и те бьются с раком, не слыша криков «стой» и просьб о пощаде. Так зачем же организм человека тормозит собственный иммунитет, кому помогают «нобелевские» лекарства и при чем здесь блюз?

Каждый год накануне нобелевской недели разворачивается битва экстрасенсов: ученые, журналисты и им сочувствующие соревнуются в увлекательной игре «угадай лауреата». Кто-то подсчитывает цитируемость статей, кто-то пытается оценить значимость открытий. Сегодня, в первом раунде нобелевской недели, победу празднуют те, кто делал свой прогноз с опорой на «эффект Матфея».

Почти всем нобелевским лауреатам в области физиологии и медицины, отмечали они, ранее присуждали премии Ласкера, Гэрднера, Олбани, Шо, Вулфа и Breakthrough Prize (премия, учрежденная Марком Цукербергом, Сергеем Брином и Юрием Мильнером). Из этого следовало, что наиболее вероятными кандидатами являются Джеймс Эллисон и Александр Варшавский, у каждого из них по пять из шести премий-предсказателей. В этой паре Варшавский — очень сложный кандидат, поскольку за работы в его области уже давали Нобелевскую премию в 2004 году, не включив его в список лауреатов. Таким образом, на выходе остается только Джеймс Эллисон.

Это пророчество согласуется и с другими любопытными закономерностями вручения Нобелевских премий по физиологии и медицине. Если посмотреть на лауреатов последнего десятилетия или двух, то видно, что практические и теоретические открытия чередуются примерно 2 через 2. Предыдущие две премии — 2016 и 2017 годов — были присуждены за открытие механизмов аутофагии (клеточного «самопереваривания») и циркадных ритмов. Значит, в этом году пришла очередь прикладных достижений быть оцененными по достоинству.

Давай, руби этого

В основе нобелевского открытия лежат две молекулы с непростой судьбой. Первая — CTLA-4 — была обнаружена еще в 1987 году на поверхности активированных Т-киллеров, группе Т-лимфоцитов, атакующих подозрительные клетки организма. Отсюда ее название — антиген 4 цитотоксических Т-лимфоцитов (cytotoxic T lymphocyte antigen 4). Некоторое время считалось, что CTLA-4 нужна для активации Т-клеток, но Джеймс Эллисон предположил, что все строго наоборот.

Каждая Т-клетка «заточена» на узнавание какого-то одного врага, антигена. В тканях нашего организма рассредоточены антиген-презентирующие клетки, такие молекулярные соглядатаи, которые ловят проплывающие мимо белки-антигены из окружающей ткани, выставляют их на свою поверхность и отправляются «докладывать обстановку» в лимфатические узлы, где показывают (презентируют) антигены Т-лимфоцитам.

«Доклад» фактически выглядит так: на поверхности Т-лимфоцита есть две похожие между собой «педали» — мембранных рецептора, на которые может нажать антиген-презентирующая клетка с помощью молекулы В7. Рецептор CD28 — это педаль газа; когда Т-клетка узнает (то есть связывает) свой антиген, она переходит в состояние боевой готовности и может размножаться или убивать клетки, несущие антиген-мишень. Эллисон же нашел педаль тормоза — это та самая молекула CTLA-4: если нажать на нее, Т-клетка переходит в подавленное состояние и атаковать никого не может.

Педали «газа» и «тормоза» очень похожи друг на друга. С какой именно свяжется антиген-презентирующая клетка, определяется случайным образом. Фактически происходит конкуренция между двумя педалями за нажимающую на них ногу. При этом тормозная педаль чаще выигрывает, потому что к ней «нога» В7 прилипает лучше — это позволяет избежать развития аутоиммунных заболеваний, которыми чревата любая гиперактивация иммунной системы.

В случае второй молекулы — PD-1 — конфуза с названием не возникло. Группа Таску Хондзё с самого начала обнаружила, что эта молекула запускает гибель клеток, отсюда и аббревиатура (PD — programmed death, т. е. программируемая смерть). Однако ее роль в иммунной системе стала понятна лишь семь лет спустя, когда обнаружилось, что у мышей, лишенных PD-1, развиваются симптомы, похожие на системную красную волчанку — известное аутоиммунное заболевание. Это позволило Хондзё заключить, что PD-1 запускает еще один механизм подавления иммунитета. Впоследствии оказалось, что молекула PD-1 по структуре похожа на CTLA-4 и CD28, а запускающий ее лиганд — PD-L1 — напоминает «ногу» В7. Однако между собой эти два механизма не связаны, это два независимых способа затормозить иммунную активность.

Вместе оба тормозных механизма получили название иммунных чекпоинтов (checkpoints), то есть контрольных точек в жизни иммунной клетки. В их честь названа музыкальная группа The Checkpoints, в составе которой Джеймс Эллисон играет блюз.

Это аналогия с более известными чекпоинтами — контрольными точками клеточного цикла (то есть моментами, в которые клетка «определяет», может ли она начать или продолжать деление), за которые, кстати, тоже присудили Нобелевскую премию в 2001 году.

Не жми на газ, а режь тормоза

Большинство заболеваний, которые продолжают терзать человечество в XXI веке, связаны с избыточной активностью иммунной системы и сопровождаются воспалением. И только в одном случае здоровая на первый взгляд иммунная система бездействует — когда речь заходит о раковых опухолях. В тот самый момент, когда необходимо ударить по своим, а точнее — по предателям, механизмы сдерживания агрессии играют против нас. Виноваты в этом не только антиген-презентирующие клетки, которые из осторожности чаще нажимают на тормоз, чем на газ, но и сами клетки опухоли, на поверхности которых часто встречается «тормозный» лиганд PD-L1.

И пока остальные иммунологи искали способ активировать CTLA-4 и PD-1 у пациентов с аутоиммунными заболеваниями, Эллисон, а затем и Хондзё предложили, наоборот, заблокировать эти педали в клетках онкобольных.

Самым простым из известных способов заблокировать какую-либо молекулу сейчас являются специфичные антитела. Их получают, вводя человеческую молекулу в организм какого-нибудь млекопитающего, который развивает на нее иммунный ответ и производит нужные иммуноглобулины. Антитела работают как глушители — связываются с активным центром молекулы и не дают ей взаимодействовать с другими веществами. Наработав в животном антитела к «тормозам», мы вводим их человеку — те связывают его тормоза на Т-клетках, и последние начинают безостановочно рубить шашкой «врагов народа», и уговорить их остановиться уже не могут ни презентирующие клетки, ни раковые.

Интересно, что при внешне сходном механизме действия блокировка CTLA-4 и PD-1 дает разные результаты. Когда мы вводим в организм антитела к CTLA-4, тормоза отказывают у всех Т-клеток, на которых хватило дозы антитела. Это позволяет усилить в целом иммунный ответ на любые стимулы.

Когда же мы используем анти-PD-1 антитела, мы блокируем, среди прочего, механизм, посредством которого именно клетки опухоли подавляют активность своих убийц.

Таким образом, антитела к PD-1 действуют более локально и оказываются эффективнее. Поэтому на данный момент в США одобрен всего один препарат на основе антител к CTLA-4 и целых пять — на основе антител к PD-1. Но еще эффективней оказывается комбинированная терапия, когда мы на всякий случай блокируем все тормоза одновременно.

Далеко ли уедем

Однако не стоит, конечно, думать, что сегодняшнюю премию дали за окончательную и бесповоротную победу над раком, весть о которой научное сообщество решило приберечь до 1 октября 2018 года, чтобы приурочить ее к вручению Нобелевской премии по физиологии и медицине. Нет, проблема все еще не решена до конца, и до победы над раком нам все еще далеко. Есть несколько тонкостей, которые нужно держать в уме, когда мы говорим об иммунотерапии рака.

1. Процент выживаемости. Как бы мы ни радовались успехам иммунотерапии, это пока еще не панацея. Несмотря на то, что у определенного процента пациентов она позволяет добиться ремиссии, результат пока далек от абсолютного. Возможно, более эффективным окажется комбинирование ингибиторов чекпоинтов с другими методами.

2. Побочные эффекты. Снятие иммунной системы с тормозов, увы, не проходит бесследно. Очень часто у пациентов возникают воспаления или нарушения работы желез — очевидные аутоиммунные нарушения. И в целом, как и следовало ожидать, блокировка CTLA-4 вызывает более тяжелые и системные реакции, чем в случае PD-1.

3. Индивидуальное действие. Ингибиторы чекпоинтов используются в практике уже несколько лет (анти-CTLA-4 — с 2011 года, анти-PD-1 — с 2014-го), и за это время накопилось немало статистики по их эффективности. Оказалось, что она зависит, во-первых, от типа опухоли. Легче прочих поддается лечению лимфома Ходжкина (50—90% успешной терапии), следом за ней — некоторые виды карциномы и меланомы. Для других типов эффективность предстоит проверять. Во-вторых, успех зависит от генотипа самого пациента. Чем более он гетерозиготен (то есть генетически разнообразен) по молекулам, презентирующим антиген (МНС, главный комплекс гистосовместимости), тем лучше его Т-клетки распознают опухоль и тем выше шанс на излечение.

4. Как это работает? Что самое интересное в этой истории, так это то, что на данный момент никто, даже сами нобелевские лауреаты, до конца не понимают, как именно работают механизмы, которые они предложили для борьбы с раком. Например, группа Эллисона нашла подтверждения сразу для нескольких возможных механизмов действия антител к CTLA-4: это может быть блокировка «тормозной педали» на Т-киллерах, или блокировка «ноги» В7 на антиген-презентирующих клетках, или же вовсе влияние на Т-регуляторные клетки, на которых тоже есть CTLA-4 и которые в норме подавляют активность иммунитета. С анти-PD-1 препаратами все немного проще, однако до сих пор не вполне ясно, почему опухоли, на которых нет молекул PD-L1 и которые непосредственно не угнетают иммунитет, также отвечают на терапию.

***

Это не первый раз, когда Нобелевскую премию присуждают за методы борьбы с раком. Премия уже доставалась изобретателям гормональной терапии (1966), химиотерапии (1988) и трансплантации костного мозга (1990). Сегодня Нобелевский комитет впервые обратил внимание на иммунологический подход к этой проблеме. Однако с 2011 года, когда был запатентован первый ингибитор чекпоинтов, в онкоиммунологии произошло множество интересных событий. Набирают силу терапия дендритными клетками (антиген-презентирующими) и противоопухолевая вакцинация, одобрена первая генная терапия (CAR-T). Делаем ставки, дамы и господа?

Полина Лосева