Ученые СО РАН строят квантовый компьютер

Начало квантовой информатики связано с именами российского математика Юрия Манина и американского физика Ричарда Фейнмана, которые три десятилетия назад предложили использовать квантовые системы (группы микрочастиц с дискретным набором состояний) для вычислений.

Как базовый пример квантового вычислителя (компьютера) рассмотрим систему, состоящую из множества квантовых объектов, для каждого из которых возможны только два состояния, условно соотносящиеся с логическими значениями «ноль» и «единица». Такие объекты называют квантовыми битами, или кубитами, а состоящую из них систему – квантовым регистром.

Если кубиты взаимодействуют друг с другом, то их состояния оказываются перепутанными, и тогда измерение состояния одного кубита мгновенно изменяет состояние всех остальных. Возникающие вследствие этого особенности квантовых вычислений определяют феноменальное превосходство квантового компьютера в решении некоторых математических задач, недоступных для традиционных ЭВМ (например, в современной криптографии).

Первые простейшие квантовые вычисления были продемонстрированы на органических молекулах в жидкости. Однако твердотельная основа квантового вычислителя легче реализуема, да и представляется наиболее естественной. На сегодняшний день в реализации простых квантовых алгоритмов наибольшие успехи достигнуты с одиночными ионами в электростатических ловушках. Однако подобным образом создать квантовый регистр большой емкости довольно трудно.

Более перспективным в качестве кубитов квантового компьютера видится использование одиночных электронейтральных атомов. Пара долгоживущих подуровней сверхтонкой структуры основного состояния атома может использоваться для длительного хранения информации. Управление квантовым состоянием может осуществляться последовательностью лазерных импульсов, а захваченные в созданную лазерным излучением оптическую решетку нейтральные атомы способны образовать квантовый регистр практически любого размера. Главное же их преимущество – возможность управлять межатомным взаимодействием путем лазерного возбуждения на высокоэнергетичные уровни, что и стало предметом работы ученых СО РАН.

Такие состояния атома (ридберговские) обладают целым рядом уникальных свойств, включая большие времена жизни и способность чувствовать друг друга на значительном расстоянии. Значительных успехов в реализации квантовых логических операций с отдельными атомами достигла группа ученых из американского университета Висконсин-Мэдисон, которым удалось выполнить инверсию состояния атома. Длительность последовательности лазерных импульсов, необходимых для ее выполнения, составила 7 мкс. Однако полный экспериментальный цикл длился около секунды, а это значит, что классический компьютер пока остается более быстродействующим.

Вопросами практической реализации квантовых вычислений в России занимаются ученые из Института физики полупроводников СО РАН (г. Новосибирск). Они проводят эксперименты с ультрахолодными атомами рубидия, для возбуждения которых в ридберговское состояние применяют лазеры с высокой частотой следования импульсов. Здесь также разработана методика высокоскоростной регистрации числа атомов, возбуждаемых под воздействием каждого лазерного импульса в серии, независимо от остальных. С ее помощью планируется наблюдать эффект дипольной блокады, суть которого состоит в том, что при лазерном возбуждении ансамбля сильно взаимодействующих атомов только один его атом может перейти в ридберговское состояние. Это можно использовать для разработки квантовых схем быстрых логических

ключей, поэтому в ближайшее время планируется детальное изучение этого эффекта.

Конечно, задача реализации вычислений на квантовых компьютерах потребует еще немало усилий от ученых всего мира, но ее решение способно привести к значительному прогрессу не только в физике, математике, информатике, но и в науке в целом.

И. И. Бетеров, к. ф.-м. н., Институт физики полупроводников им. А. В. Ржанова СО РАН

Наука из первых рук, № 4 (34). Опубликовано в сокращении.