Нобелевские батарейки

Лауреатами Нобелевской премии по химии стали американский физик Джон Гуденаф, британский химик Стэнли Уиттингем и японский химик Акира Есино за развитие литий-ионных батарей. Имена лауреатов были объявлены на церемонии Нобелевского комитета в Стокгольме.

Литий-ионные батареи — это быстро перезаряжаемые и мощные химические источники электрического тока, которые используются во многих областях, начиная от мобильных телефонов и заканчивая электромобилями. Они находят широкое применение и в области альтернативной энергетики, так как позволяют накапливать излишки солнечной и ветряной энергии, что позволяет в конечном итоге уменьшать зависимость человечества от ископаемых источников топлива.

Долгожданным и заслуженным считает присуждение премии Даниил Иткис, старший научный сотрудник химического факультета МГУ.

«Комментарий короткий – давно пора, — сказал он «Газете.Ru». – Мы очень долго ждали этого события. Литий-ионные аккумуляторы, существование которых определяется подбором материала электродов и электролита, обязаны своим появлением именно этим людям».

История литий-ионных батарей началась во время мирового нефтяного кризиса в 1970-е годы. Тогда Стэнли Уиттингем разрабатывал новые методы в области производства сверхпроводников и создал материал, который стал отличным катодом в литиевых батареях. Это был дисульфид титана, который на молекулярном уровне имеет ячейки, где могут удерживаться ионы лития.

Лауреатами Нобелевской премии по химии стали американский физик Джон Гуденаф, британский химик Стэнли Уиттингем и японский химик Акира Есино В роли катода при этом выступал литий, способный активно высвобождать электроны, — так получились первые батареи с напряжением 2 вольта. Однако они были слишком взрывоопасны. Гуденаф, специалист в области материаловедения, считал, что использование оксида металла вместо сульфида позволит значительно развить потенциал катода. В 1980 году, после ряда экспериментов, он предложил использовать оксид кобальта. С его помощью напряжение удалось довести до 4 вольт.

В 1985 году Есино, основываясь на разработках Уиттингема и Гуденафа, разработал первый коммерческий образец литий-ионной батареи — легкий и износостойкий аккумулятор, который можно перезаряжать сотни раз до того, как он выйдет из строя.

Первую партию батарей выпустила японская корпорация Sony в 1991 году. Они произвели настоящую технологическую революцию, заложив основу для создания систем устройств, не зависящих от проводов и ископаемого топлива.

«Технология литий-ионных аккумуляторов развивается уже тридцать лет и уже подходит к своему пределу, — говорит Иткис. — Сегодня это очень широкий класс химических источников тока. Они бывают и высокомощные, и с высокой удельной энергией, то есть они не универсальные. Поэтому надо понимать, что для каких-то задач будут оптимальны свои источники, но ими все не исчерпывается. Например, для крупных систем накопления энергии интереснее использовать натрий-ионные или калий-ионные аккумуляторы, которые только разрабатываются».

По мнению Иткиса, в настоящее время лидером в области разработки литий-ионных элементов являются США. «Очень хорошая научная школа во Франции. А в технологическом плане сегодня впереди Корея и Япония, хотя их уже догоняет Китай и думаю, скоро перегонит», — добавляет он.

Ранее предполагалось, что Нобелевская премия по химии могла достаться Рольфу Хьюсгену из Мюнхенского университета и Мортену Мельдалю из Университета Копенгагена, сделавшим существенный вклад в развитие синтетической органической химии. Хьюсген разработал общую концепцию 1,3-диполярного циклоприсоединения, а спустя полвека группа Мельдаля сообщила о катализе подобной реакции медью. Реакция Хьюгсена получила широкое распространение в клик-химии, химических реакциях, направленных на быстрое и эффективное получение химических веществ с помощью соединения отдельных маленьких элементов. Это позволяет, например, ускорить поиск новых лекарств — в частности, по реакции Хьюгсена образуются триазолы, соединения с диапазоном применений от пестицидов до нейролептиков.

Еще один кандидат в лауреаты — профессор Оксфордского университета Эдвин Саузерн, разработавший метод выявления определенной последовательности ДНК в образце. Саузерн-блот позволяет определять число копий генов в пробе. Метод лег в основу генетического картирования, диагностики, скрининга и персонализированной медицины.

За разработку исследовательских методов могли быть награждены еще трое специалистов: Марвин Карутерс из Университета Колорадо, Лерой Худ из Института системной биологии в Сиэттле и президент компании Pacific Biosciences of California Майкл Ханкапиллер. Все они — разработчики новых методов и приборов секвенирования и синтеза ДНК и белков, без которых был бы невозможен успех проекта «Геном человека».

Журнал Химического общества США Chemical & Engineering News предлагал своих кандидатов. По мнению специалистов, верно спрогнозировавших вручение премии Гуденафу или кому-то еще, кто занимался созданием литий-ионных батарей, премии были также достойны внесшие значительный вклад в исследование метода редактирования генома CRISPR американский биохимик Дженнифер Дудна и французский микробиолог Эммануэль Шарпентье.

Читатели европейского журнала Chemistry Views болели за астрохимика Эвину ван Дисхук, разработчицу метода радикальной полимеризации с переносом атомов Кшиштофа Матяшевского, и создателя металлоорганических каркасов Омара Яги.

В 2018 году половину премии получила американский ученый Фрэнсис Арнольд за работы в области эволюции ферментов, половину — американец Джордж Смит и британец сэр Грегори Уинтер за разработку фагового дисплея, метода изучения белок-белковых, белок-пептидных и ДНК-белковых взаимодействий, использующий бактериофагов для того, чтобы соотнести белки и генетическую информацию, кодирующую их.